首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
Interfacial interactions of Nafion ionomer with superhydrophilic (Pt, Au), hydrophilic (SiO2), and hydrophobic (graphene, octyltrichlorosilane [OTS]‐modified SiO2) is investigated, using in situ thermal ellipsometry, by quantification of substrate‐ and thickness‐dependent thermal properties of the ultrathin Nafion films of nominal thickness ranging 25–135 nm. For sub‐50 nm thin Nafion films, the thermal expansion coefficient of films decreased in the order of most hydrophobic to most hydrophilic substrate: OTS > graphene > SiO2 > Au > Pt, implying weaker interpolymer and polymer–substrate interactions for films on hydrophobic substrates. Expansion coefficient of films on SiO2, graphene, and OTS‐modified SiO2 decreased with thickness whereas that of films on Au and Pt substrates increased with thickness. Above ~100 nm of thickness, films on all substrates converged toward a common value representative of bulk Nafion. Thermal transition temperature was found to be higher for films on hydrophilic SiO2 than that for films on hydrophobic graphene and OTS‐modified SiO2 but was not discernible for films on Au and Pt substrates. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2019 , 57, 343–352  相似文献   

2.
Poly(methyl methacrylate) (PMMA)/graphene nanocomposites were prepared by a simple solution blending method. The glass transition temperature of the produced PMMA/graphene composite was increased by 37 °C with 1.0 wt.% RGO content, which is approximately 40% of improvement compared to that of pure PMMA. The thermal expansion coefficient (TEC) decreased by 68% with as low as 0.1 wt.% RGO loading. The electrical conductivity of the nanocomposites reached up to 0.037 S/m even with only 2.0 wt.% RGO, which increased by more than twelve orders of magnitude. The resulting nanocomposites showed that a stable colloidal suspension of graphene dispersion in organic solvent before blending with PMMA is necessary to fabricate the nanocomposites with enhanced properties.  相似文献   

3.
Novel molecularly imprinted chitosan microspheres were prepared on the surface of magnetic graphene oxide, with deep eutectic solvents both as a functional monomer and template. The prepared molecularly imprinted chitosan microspheres‐magnetic graphene oxide was characterized by scanning electron microscopy, Fourier transform infrared spectroscopy, X‐ray diffraction, Brunauer‐Emmett‐Teller surface area, thermogravimetric analysis were subsequently combined with solid‐phase micro‐extraction for simultaneous separation and enrichment of the extraction of chlorophenols from environmental water. Factors affecting the extraction efficiency of chlorophenols were optimized using response surface methodology. The actual extraction capacities under the optimal conditions (liquid to solid ratio = 3, cycles of adsorption/desorption = 5, 40°C extraction temperature, and extraction time for 35 min) were 86.90 mg/g. Compared to the traditional materials, the molecularly imprinted chitosan microspheres‐magnetic graphene oxide produced higher selectivity and extraction capacity.  相似文献   

4.
In this research, a conductive adhesive based on epoxy resin as the polymer matrix and silver‐coated copper powder and silver‐coated reduced graphene oxide as conductive fillers was synthesized. Graphene oxide was synthesized by modified Hummer's method. It was reduced and modified by silver powder. Copper particles were coated with silver using the electroless plating method. Finally, conductive nanocomposite adhesives were prepared using conductive fillers with different weight fractions. The structural properties of fillers were identified by Fourier‐transform infrared (FTIR) and induced coupled plasma (ICP) analysis and the morphology of the samples by scanning electron microscopy (SEM). Finally, conductive properties, lap shear strength, and thermal stability of adhesive were evaluated. The conductive adhesive prepared with optimized properties have 70% weight percentage silver‐coated copper powder and 1% weight percentage silver‐coated reduced graphene oxide. The bulk resistivity of the optimum sample was 1.6 × 10‐2 Ω.cm, and the lap shear strength was 7.10 MPa. Also, thermogravimetric analysis showed that the weight loss of adhesive decreased from 88.72% to 30.55% during heating, which showed the addition of fillers improves the thermal stability of adhesive.  相似文献   

5.
Electrocatalysis of oxygen reduction using Pt nanoparticles supported on functionalized graphene sheets (FGSs) was studied. FGSs were prepared by thermal expansion of graphite oxide. Pt nanoparticles with average diameter of 2 nm were uniformly loaded on FGSs by impregnation methods. Pt-FGS showed a higher electrochemical surface area and oxygen reduction activity with improved stability as compared with the commercial catalyst. Transmission electron microscopy, X-ray photoelectron spectroscopy, and electrochemical characterization suggest that the improved performance of Pt-FGS can be attributed to smaller particle size and less aggregation of Pt nanoparticles on the functionalized graphene sheets.  相似文献   

6.
We apply thermal wrinkling, which is a surface instability that occurs during thermal annealing of polymer films geometrically confined by a rigid substrate and a flexible superstrate, to study the elasticity and viscosity of chemically crosslinked polymer systems. Specifically, we study the thermal wrinkling of aluminum‐capped polyhydroxystyrene films with different extent of chemical crosslinking and find that that the rate of change of the wrinkling wavelength with annealing time and temperature has unique relationships with the elasticity and viscosity of the polymer network. With the aid of analytical expressions that relate the time‐ and temperature‐dependent evolution of the wrinkle wavelength to the elasticity and viscosity, we are able to quantify the elastic modulus and shear viscosity of geometrically confined polymer thin films as a function of the degree of crosslinking. © 2012 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2012  相似文献   

7.
During recent years, graphene as a solid lubrication material have been thoroughly studied under nano or micro scales, but rarely reported at industrial conditions. In present work, graphene films as solid lubricant were prepared on the surface of 201 stainless steel substrates by pencil sketch. And then the friction tests from 5 to 65 N were carried out via a homemade tribo-tester and used GCr15 balls (ø = 5 mm) as friction pairs. Not surprisingly, graphene films cannot bear the loads beyond 5 N, but interestingly, via gradually increasing the loads, graphene films show prominent load performance and steady state of friction coefficients at about 0.12 while the loads varied from 5 to 65 N. Compared with bare steel, the coefficient of graphene films reduced by about 80%, and the wear volume reduced to 1/28 when variable load (from 5 N to 30 N) were applied. Raman spectra shown that the structure of graphene had been changing into diamond-like carbon films with graphene distributed inside, which was confirmed by HRTEM that graphenes were coming with amorphous carbon. Considering the roughness of steel wafers (170 nm), one can speculate that, with graphene films' protection, the steel has no abrasion but plastic deformation instead. It is concluded that the shearing force induced the film densification via sp2 to sp3 changing that enforced cross-linking. This cross-linking carbon matrix was responsible for high load bearing and the graphene exfoliated into graphene under shearing force contribute to low steady-state friction. Benefiting from sketch, one can get a lubrication film on any substrates with complex topography, our results shed light on the growth of graphene films for industrial use.  相似文献   

8.
An efficient solid‐supported catalyst for the Huisgen [3 + 2] cycloaddition reaction between azides and alkynes was prepared from copper(I) iodide and 1,2,3‐triazole‐functionalized graphene oxide. This catalyst was then used for the efficient synthesis of β‐hydroxy‐1,2,3‐triazoles giving access to these products in excellent yields. In this protocol, the catalyst was shown to have high activity, air‐stability and recyclability. The formation of copper triazolide is very straightforward and energetically desirable. The catalyst can be isolated from copper‐catalysed azide–alkyne cycloaddition reactions.  相似文献   

9.
A three‐dimensional graphene was synthesized through a hydrothermal reaction of graphene oxide with phytic acid. The microstructure and morphology of the phytic acid induced three‐dimensional graphene were investigated by nitrogen adsorption–desorption isotherms, scanning electron microscopy, and transmission electron microscopy. With a large surface area and three‐dimensional structure, the graphene was used as the solid‐phase extraction adsorbent for the extraction of phthalate esters from bottled water and sports beverage samples before high‐performance liquid chromatographic analysis. The results indicated that the graphene was efficient for the solid‐phase extraction of phthalate esters. The limits of detection (S/N = 3) of the method for the analytes were 0.02–0.03 ng/mL for the water samples and 0.03–0.15 ng/mL for the sports beverage sample. The limits of quantitation (S/N = 9) for the analytes were 0.06–0.09 ng/mL for water samples and 0.09–0.45 ng/mL for sports beverage sample. The calibration curves for the phthalate esters by the method had a good linearity from 0.1 to 80.0 ng/mL with correlation coefficients larger than 0.9997. The recoveries of the analytes for the method fell in the range of 86.7–116.2% with the relative standard deviations between 1.5 and 6.8%.  相似文献   

10.
The improvement of thermal insulating performance of polyurethane rigid foams is a crucial task for their use. In this work, the effect of graphene on these properties has been studied by preparing and testing unfilled, 0.3 and 0.5 wt% graphene‐filled polyurethane foams. It was found that graphene is able, at very low content (0.3 wt%), to reduce the radiative contribution of the initial thermal conductivity by both decreasing the cell size and increasing the extinction coefficient. Due to the low graphene contents considered, no concerns about the solid‐phase contribution of thermal conductivity arise. Polyurethane–graphene nanocomposite foams showed also slower aging rate with respect to unfilled foams. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

11.
Zinc-cobalt molybdate composites (Zn1–xCoxMoO4; x = 0, 0.3, 0.5, 0.7, 1) were synthesised by a simple co-precipitation method and characterised by thermogravimetric/differential thermal analysis (TG/DTA), Fourier transform-infrared (FT-IR), Fourier transform Raman (FT-Raman) spectroscopy, X-ray diffraction spectroscopy (XRD), scanning electron microscopy (SEM/EDAX) and transmission electron microscopy (TEM). The surface area was calculated by BET analysis in the adsorption/desorption isotherm. The humidity sensing properties of zinc-cobalt molybdates were tested by dc electrical measurements at different relative humidity environments (RH = 5–98%). The electrical resistance of the composites linearly decreases and the maximum sensitivity of 3672 ± 110 was observed for the Zn0.3Co0.7MoO4 (ZnCM-4) composite towards humidity, which is calculated by the relation Sf = R5%/R98%, where the response time is 200 s and the recovery time is 100 s. Photoluminescence (PL) measurement at the room temperature of ZnM-1 composite exhibited a blue emission peak at 475 nm (λem) when excited at a wavelength (λex) of 430 nm. During Co2+ substitution in Zn2+ matrix, a green and red emission peak was observed when excited at a wavelength (λex) of 520 nm.  相似文献   

12.
13.
The stability of copper films of three types on graphene was studied by the molecular dynamics method. Films in the form of (111) and (100) planes and elongated (111) plane of the Cu crystal were considered. The initial arrangement of the Cu atoms relative to the carbon atoms was shown to considerably affect the thermal stability of the films. The most stable film was the one formed by placing Cu atoms in the nonadjacent hexagonal cells of graphene. The horizontal mobility of Cu atoms in this film decreased, while the vertical mobility increased as the temperature increased. The most significant stresses in this film were determined by the zigzag and chair orientations of the graphene sheet.  相似文献   

14.
The influence of doping with copper oxide on the phase composition, electric conductivity, and linear thermal expansion coefficient (LTEC) of SmBaCo2O5 + δ and NdBaCo2O5 + δ was studied. The sample homogeneity region has been determined with using XRD. The samples conductivity decreased as the dopant concentration increased. The character of the temperature dependence of conductivity changed at high copper contents. In a reductive atmosphere, the conductivity of the samples at first decreased and then remained constant. The linear thermal expansion coefficient decreased as the amount of the incorporated dopant increased.  相似文献   

15.
Photoorientation and reorientation processes induced by illumination of the samples with oppositely directed polarized light and by the thermal treatment were studied for the films of triblock copolymer pAzo10‐b‐pPhM80‐b‐pAzo10 consisting of a nematic phenyl benzoate сentral sub‐block (PhM, DP = 80) with two terminal smectic azobenzene sub‐blocks (Azo, DP = 10). For amorphized films of triblock copolymer, illumination with polarized light (λ = 546 nm) is shown to be by orientation of only Azo‐containing groups, but upon following annealing of the film, PhM groups are adjusted to the orientation of Azo fragments. It was found, that the subsequent illumination of the block copolymer sample with oppositely directed polarized light changes the orientation of azobenzene groups, while the orientation of phenyl benzoate groups is remained unchanged. Thus, the cyclic illumination of the triblock copolymer samples by the linear polarized light and subsequent thermal treatment make it possible to control and fix orientation of azobenzene and phenyl benzoate groups located in different sub‐blocks in the desired and independent manner. The comparison of these results with the data on random p(Azo7ran‐PhM30) copolymer of the similar composition revealed, that in the random copolymer, both Azo and PhM mesogenic groups are involved in the orientational cooperative process regardless of films process treatment. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 1602–1611  相似文献   

16.
Gold particles supported on tin(IV) oxide (0.2 wt % Au/SnO2) were modified with copper and silver by the multistep photodeposition method. Absorption around λ=550 nm, attributed to surface plasmon resonance (SPR) of Au, gradually shifted to longer wavelengths on modification with Cu and finally reached λ=620 nm at 0.8 wt % Cu. On the other hand, the absorption shifted to shorter wavelength with increasing amount of Ag and reached λ=450 nm at 0.8 wt % Ag. These Cu‐ and Ag‐modified 0.2 wt % Au/SnO2 materials (Cu‐Au/SnO2 and Ag‐Au/SnO2) and 1.0 wt % Au/SnO2 were used for mineralization of formic acid to carbon dioxide in aqueous suspension under irradiation with visible light from a xenon lamp and three kinds of light‐emitting diodes with different wavelengths. The reaction rates for the mineralization of formic acid over these materials depend on the wavelength of light. Apparent quantum efficiencies of Cu‐Au/SnO2, Au/SnO2, and Ag‐Au/SnO2 reached 5.5 % at 625 nm, 5.8 % at 525 nm, and 5.1 % at 450 nm, respectively. These photocatalysts can also be used for selective oxidation of alcohols to corresponding carbonyl compounds in aqueous solution under visible‐light irradiation. Broad responses to visible light in formic acid mineralization and selective alcohol oxidation were achieved when the three materials were used simultaneously.  相似文献   

17.
In this article, we present the research on the influence of the composition of thin films of a blend of poly (3-hexylthiophene −2,5-diyl) - P3HT with fullerene derivatives [6,6]-phenyl-C71-butyric acid methyl ester – PC70BM and [6,6]-phenyl-C61-butyric acid methyl ester – PC60BM on their thermal transitions. The influence of molar mass (Mw) of P3HT (Mw = 65.2; 54.2 and 34.1 kDa) and PCBM (PC60BM – Mw = 911 g/mol and PC70BM – Mw = 1031 g/mol) is examined in details. The article presents significantly expanded research compared to our previous work on thermal transitions in thin films of blend P3HT (Mw = 65.2 kDa) with PC60BM. For this reason, we also compare current results with previous ones. Here, we present for the first time a phase diagram of thin films of the P3HT(Mw = 65.2 kDa):PC70BM blend using variable-temperature ellipsometry. Our research reveals the presence of characteristic temperatures of pure phases in thin films of P3HT: PCBM blends. It turns out that the cold crystallization temperature of the P3HT phase in P3HT(Mw = 65.2 kDa):PC70BM blend films is lower than corresponding temperature in P3HT(Mw = 65.2 kDa):PC60BM blend films. At the same time, the cold crystallization temperature of the PC70BM phase behaves inversely. We demonstrate also that variable-temperature spectroscopic ellipsometry is a very sensitive technique for studying thermal transitions in these thin films. In addition, we show that the entire phase diagram can be determined based on the raw ellipsometric data analysis, e.g. using a delta angle at wavelength λ = 280 nm.  相似文献   

18.
We report the first pyrrole‐ring surface‐functionalized graphene quantum dots (p‐GQDs) prepared by a two‐step hydrothermal approach under microwave irradiation in an ammonia medium. The most distinct feature of the functionalized GQDs is that both the excitation and emission wavelengths fall into the visible‐light region. The p‐GQDs are excited by visible light at λex 490 nm (2.53 eV) to emit excitation‐independent photoluminescence at a maximum wavelength of λem 550 nm. This is thus far the longest emission wavelength reported for GQDs. Stable photoluminescence is achieved at pH 4–10 with an ionic strength of 1.2 mol L?1 KCl. These features make the p‐GQDs excellent probes for bio‐imaging and bio‐labeling, which is demonstrated by imaging live HeLa cells.  相似文献   

19.
Graphene oxide (GO) was chemically modified with a poly(propylene)imine Generation 3.0 dendrimer (DAB-Am-16). The characterization, structure and properties of hybrid graphene oxide/DAB-Am-16 dendrimer was studied by Raman spectroscopy, Fourier-Transforming Infrared Spectroscopy (FT-IR), X-Ray Photoelectron Spectroscopic (XPS), X-ray Diffraction (XRD), Scanning Electron Microscopy (SEM) and Thermogravimetric analysis. After functionalized the hybrid material (GOD) can interact with copper and subsequently with hexacyanoferrate (III) ions (GODHCu). The GODHCu incorporated into a graphite paste electrode (20% w/w) was applied to an electrocatalytic detection of neurotransmitter l-dopamine using differential pulse voltammetry. The analytical curve showed a linear response in the concentration range from 1.0 × 10−7 to 1.0 × 10−5 mol L−1 with a corresponding equation Y(A) = 1.706 × 10−5 + 0.862 [l-dopamine] and a correlation coefficient r2 = 0.998. The detection limit was 6.36 × 10−7 mol L−1 with a relative standard deviation of ±4% (n = 3) and an amperometric sensitivity of 0.862 A/mol L−1.  相似文献   

20.
Lightweight conductive polymers are considered for lightning strike mitigation in composites by synthesizing intrinsically conductive polymers (ICPs) and by the inclusion of conductive fillers in insulating matrices. Conductive films based on polyaniline (PANI) and graphene have been developed to improve through‐thickness conductivity of polymer composites. The result shows that the conductivity of PANI enhanced by blending polyvinylpyrrolidone (PVP) and PANI in 3:1 ratio. Conductive composite thin films are prepared by dispersing graphene in PANI. The conductivity of composite films was found to increase by 40× at 20 wt% of graphene inclusion compared with PVP and PANI blend. Fourier‐transform‐infrared (FTIR) spectra confirmed in situ polymerization of the polymer blend. The inclusion of graphene also exhibits an increase in Tg by 21°C. Graphene additions also showed an increase in thermal stability by approximately 148°C in the composite films. The mechanical result obtained from DMA shows that inclusion of graphene increases the tensile strength by 48% at 20 wt% of graphene reinforcement. A thin, highly conductive surface that is compatible with a composite resin system can enhance the surface conductivity of composites, improving its lightning strike mitigation capabilities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号