首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Current materials used for bone regeneration are usually bioactive ceramics or glasses. Although they bond to bone, they are brittle. There is a need for new materials that can combine bioactivity with toughness and controlled biodegradation. Sol‐gel hybrids have the potential to do this through their nanoscale interpenetrating networks (IPN) of inorganic and organic components. Poly(γ‐glutamic acid) (γ‐PGA) was introduced into the sol‐gel process to produce a hybrid of γ‐PGA and bioactive silica. Calcium is an important element for bone regeneration but calcium sources that are used traditionally in the sol‐gel process, such as Ca salts, do not allow Ca incorporation into the silicate network during low‐temperature processing. The hypothesis for this study was that using calcium methoxyethoxide (CME) as the Ca source would allow Ca incorporation into the silicate component of the hybrid at room temperature. The produced hybrids would have improved mechanical properties and controlled degradation compared with hybrids of calcium chloride (CaCl2), in which the Ca is not incorporated into the silicate network. Class II hybrids, with covalent bonds between the inorganic and organic species, were synthesised by using organosilane. Calcium incorporation in both the organic and inorganic IPNs of the hybrid was improved when CME was used. This was clearly observed by using FTIR and solid‐state NMR spectroscopy, which showed ionic cross‐linking of γ‐PGA by Ca and a lower degree of condensation of the Si species compared with the hybrids made with CaCl2 as the Ca source. The ionic cross‐linking of γ‐PGA by Ca resulted in excellent compressive strength and reduced elastic modulus as measured by compressive testing and nanoindentation, respectively. All hybrids showed bioactivity as hydroxyapatite (HA) was formed after immersion in simulated body fluid (SBF).  相似文献   

2.
The thermosensitivity of biodegradable and non‐toxic amphiphilic polymer derived from a naturally occurring polypeptide and a derivative of amino acid was first reported. The amphiphilic polymer consisted of poly(γ‐glutamic acid) (γ‐PGA) as a hydrophilic backbone, and L ‐phenylalanine ethyl ester (L ‐PAE) as a hydrophobic branch. Poly(γ‐glutamic acid)‐graft‐L ‐phenylalanine (γ‐PGA‐graft‐L ‐PAE) with grafting degrees of 7–49% were prepared by varying the content of a water‐soluble carbodiimide (WSC). γ‐PGA‐graft‐L ‐PAE with a grafting degree of 49% exhibited thermoresponsive phase transition behavior in an aqueous solution at around 80°C. The copolymers with grafting degrees in the range of 30–49% showed thermoresponsive properties in NaCl solution. A clouding temperature (Tcloud) could be adjusted by changing the polymer concentration and/or NaCl concentration. The thermoresponsive behavior was reversible. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

3.
In this work, rare earth tris(borohydride) complexes, Ln(BH4)3(THF)3 (Ln = Sc, Y, La, and Dy), have been used to catalyze the ring‐opening polymerization of γ‐benzyl‐L ‐glutamate N‐carboxyanhydride (BLG NCA). All the catalysts show high activities and the resulting poly(γ‐benzyl‐L ‐glutamate)s (PBLGs) are recovered with high yields (≥90%). The molecular weights (MWs) of PBLG can be controlled by the molar ratios of monomer to catalyst, and the MW distributions (MWDs) are relatively narrow (as low as 1.16) depending on the rare earth metals and reaction temperatures. Block copolypeptides can be easily synthesized by the sequential addition of two monomers. The obtained P(γ‐benzyl‐L ‐glutamate‐b‐ε‐carbobenzoxy‐L ‐lysine) [P(BLG‐b‐BLL)] and P(γ‐benzyl‐L ‐glutamate‐b‐alanine) [P(BLG‐b‐ALA)] have been well characterized by NMR, gel permeation chromatography, and differential scanning calorimetry measurements. A random copolymer P(BLG‐co‐BLL) with a narrow MWD of 1.07 has also been synthesized. The polymerization mechanisms have been investigated in detail. The results show that both nucleophilic attack at the 5‐CO of NCA and deprotonation of 3‐NH of NCA in the initiation process take place simultaneously, resulting in two active centers, that is, an yttrium ALA carbamate derivative [H2BOCH2(CH)NHC(O)OLn? ] and a N‐yttriumlated ALA NCA. Propagation then proceeds on these centers via both normal monomer insertion and polycondensation. After termination, two kinds of telechelic polypeptide chains, that is, α‐hydroxyl‐ω‐aminotelechelic chains and α‐carboxylic‐ω‐aminotelechelic ones, are formed as characterized by MALDI‐TOF MS, 1H NMR, 13C NMR, 1H–1H COSY, and 1H–13C HMQC measurements. By decreasing the reaction temperature, the normal monomer insertion pathway can be exclusively selected, forming an unprecedented α‐hydroxyl‐ω‐aminotelechelic polypeptide. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

4.
Sodium alginate (Alg) hydrogel films were crosslinked with either calcium poly(γ‐glutamate) (Ca‐PGA) or CaCl2. The hydrophilicity of the resulting hydrogel films was evaluated through swelling tests, water retention capacity tests, and water vapor permeation tests. The swelling ratio, water retention capacity, and the water vapor transmission rate (WVTR) of Alg/Ca‐PGA were higher than those of Ca‐Alg. The swelling ratio of Alg/Ca‐PGA was 651 and 190% at pH 7.4 and pH 1.2, respectively. The tensile strength of Alg/Ca‐PGA hydrogel was lower than that of Ca‐Alg. The results of hemocompatibility test showed that Alg/Ca‐PGA caused shorter activated partial thromboplastin time (APTT) than Ca‐Alg. Both Ca‐Alg and Alg/Ca‐PGA exhibited almost no adsorption of human serum albumin (HSA), whereas the adsorption of human plasma fibrinogen (HPF) of Ca‐Alg was 10 times of that of Alg/Ca‐PGA. In addition, Alg/Ca‐PGA exhibited platelet adhesion higher than Ca‐Alg. Furthermore, both Alg/Ca‐PGA and Ca‐Alg exhibited no cytotoxicity. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

5.
A facile and green approach is reported to construct pixantrone/poly(γ‐glutamic acid) nanoparticles (PIX/γ‐PGA NPs) as an oral drug delivery system through the complex self‐assembly of polyelectrolyte γ‐PGA and the anticancer drug pixantrone dimaleate (PDM). The complex self‐assembly behavior is investigated in detail. The results demonstrate that PDM can interact with γ‐PGA to conveniently form NPs and the size of NPs can be controlled by adjusting the solution volume ratio of PDM to γ‐PGA. These NPs illustrate their pH‐dependent release behavior, efficient cellular uptake and enhanced drug efficacy through an in vitro release study, flow cytometry, CLSM analysis and the MTT assay. In summary, PIX/γ‐PGA NPs may serve as a promising oral drug delivery system for cancer therapy.

  相似文献   


6.
Biodegradable multi‐l ‐arginyl‐poly‐l ‐aspartate (MAPA), more commonly cyanophycin, prepared with recombinant Escherichia coli contains a polyaspartate backbone with lysine and arginine as side chains. Two assemblies of polyelectrolyte multilayers (PEMs) are fabricated at three different concentration ratios of insoluble MAPA (iMAPA) with hyaluronic acid (iMAPA/HA) and with γ‐polyglutamic acid (iMAPA/γ‐PGA), respectively, utilizing a layer‐by‐layer approach. Both films with iMAPA and its counterpart, HA or γ‐PGA, as the terminal layer are prepared to assess the effect on film roughness, cell growth, and cell migration. iMAPA incorporation is higher for a higher concentration of the anionic polymer due to better charge interaction. The iMAPA/HA films when compared to iMAPA/γ‐PGA multilayers show least roughness. The growth rates of L929 fibroblast cells on the PEMs are similar to those on glass substrate, with no supplementary effect of the terminal layer. However, the migration rates of L929 cells increase for all PEMs. γ‐PGA incorporated films impart 50% enhancement to the cell migration after 12 h of culture as compared to the untreated glass, and the smooth films containing HA display a maximum 82% improvement. The results present the use of iMAPA to construct a new layer‐by‐layer system of polyelectrolyte biopolymers with a potential application in wound dressing.  相似文献   

7.
Synthesis and self‐assembly behavior of a novel amphiphilic brush‐coil block copolymer bearing hydrophilic poly(ethylene glycol) segment and hydrophobic polypeptide brush segment were presented in this work. The poly(γ‐benzyl‐L ‐glutamate) (PBLG) brush is synthesized through “grafting from” strategy by ring‐opening polymerization of γ‐benzyl‐L ‐glutamate‐N‐carboxyanhydride (BLG‐NCA) initiated by the flanking terminal primary amino group of macroinitiator. The copolymers were characterized by 1H NMR, gel permeation chromatography, Fourier transform infrared, circular dichroism spectrum, and differential scanning calorimetry. The self‐assembly behavior of the brush‐coil block copolymers in aqueous solution was investigated by means of transmission electron microscopy, scanning electron microscopy, atomic force microscopy, and laser light scattering. Spherical micelles were observed when the length of PBLG brush is shorter. The aggregate morphology transforms to spindle‐like micelles and then to rod‐like micelles, as the length of polypeptide brush increases. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 5967–5978, 2009  相似文献   

8.
《中国化学会会志》2018,65(4):424-429
In this study, we propose a time‐ and energy‐saving method using biodegradable gelatin as a green template and a low‐toxicity inorganic aluminum salt (Al(NO3)3·9H2O) as a low‐cost aluminum source for the preparation of mesoporous alumina (γ‐Al2O3). The effects of pH (pH 8.0–10.0), gelatin to aluminum source ratio (0–1.9), and the hydrothermal treatment time (0–72 h) are thoroughly explored. The gelatin can assemble with the aluminum species γ‐AlOOH via hydrogen bonding to prevent the self‐condensation of the γ‐AlOOH during the hydrothermal treatment. Distinctly, the mesoporous γ‐Al2O3 was obtained from the calcination of the resulting gelatin–γ‐AlOOH composites. Without gelatin, high‐crystallinity γ‐AlOOH formed after the hydrothermal treatment, which transformed into the nonporous γ‐Al2O3 with a small surface area (20 m2/g). Finally, it was found that with a gelatin/aluminum ratio of 0.81, reaction pH value of 8.0, and hydrothermal treatment time of 24 h, high‐surface‐area mesoporous γ‐Al2O3 (262 m2/g) with pore diameter of 6.3 nm could be synthesized.  相似文献   

9.
A series of poly(trimethylenecarbonate‐ε‐caprolactone)‐block‐poly(p‐dioxanone) copolymers were prepared with varying feed rations by using two step polymerization reactions. Poly(trimethylenecarbonate)(ε‐caprolactone) random copolymer was synthesized with stannous‐2‐ethylhexanoate and followed by adding p‐dioxanone monomer as the other block. The ring opening polymerization was carried out at high temperature and long reaction time to get high molecular weight polymers. The monofilament fibers were obtained using conventional melting spun methods. The copolymers were identified by 1H and 13C NMR spectroscopy and gel permeation chromatography (GPC). The physicochemical properties, such as viscosity, molecular weight, melting point, glass transition temperature, and crystallinity, were studied. The hydrolytic degradation of copolymers was studied in a phosphate buffer solution, pH = 7.2, 37 °C, and a biological absorbable test was performed in rats. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 2790–2799, 2005  相似文献   

10.
α‐Methyl glutamic acid (L ‐L )‐, (L ‐D )‐, (D ‐L )‐, and (D ‐D )‐γ‐dimers were synthesized from L ‐ and D ‐glutamic acids, and the obtained dimers were subjected to polycondensation with 1‐(3‐dimethylaminopropyl)‐3‐ethylcarbodiimide hydrochloride and 1‐hydroxybenzotriazole hydrate as condensation reagents. Poly‐γ‐glutamic acid (γ‐PGA) methyl ester with the number‐average molecular weights of 5000∼20,000 were obtained by polycondensation in N,N‐dimethylformamide in 44∼91% yields. The polycondensation of (L ‐L )‐ and (D ‐D )‐dimers afforded the polymers with much larger |[α]D | compared with the corresponding dimers. The polymer could be transformed into γ‐PGA by alkaline hydrolysis or transesterification into α‐benzyl ester followed by hydrogenation. © 2001 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 732–741, 2001  相似文献   

11.
High‐density polyethylene (HDPE) and low‐density polyethylene (LDPE) were irradiated in vacuo at 30–220 and 30–360°C, respectively, with γ‐rays at doses of 10–400 kGy. Temperature dependence of cross‐linking and gas evolution was investigated. It was found that cross‐linking was the predominant process up to 300°C and the gel point decreased smoothly with temperature. The increase of G(x) with temperature was likely attributed to the temperature effect on addition of radicals to the double bonds present in the polymer. Above 300°C, the gel fraction at a given dose decreased remarkably with temperature and turned to zero at 360°C. The molecular weight variation determined with gel permeation chromatography (GPC) indicated the enhanced degradation at 360°C by radiation. G‐values of H2 increased with temperature and varied with dose. The compositions of the C1–C4 hydrocarbons evolved depended on the structures of side branches. Raising the temperature favored the formation of unsaturated hydrocarbons, and the yield of unsaturated relative to saturated hydrocarbons decreased with dose. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 1541–1548, 1999  相似文献   

12.
In this study, Ag, Ni2+, and Fe2+ immobilized on hydroxyapatite‐core‐shell γ‐Fe2O3 nanoparticles (γ‐Fe2O3@HAp‐Ag, γ‐Fe2O3@HAp‐Ni2+, and γ‐Fe2O3@HAp‐Fe2+) as a new and reusable Lewis acid magnetic nanocatalyst was successfully synthesized and reported for an atom economic, extremely facile, and environmentally benign procedure for the synthesis of highly functionalized tetrahydropyridines derivatives 4a‐t is described by one‐pot five‐component reaction of 2 equiv of aldehydes 1 , 2 equiv of amines 2 , and 1 equiv of methyl acetoacetate 3 in EtOH at room temperature in good to high yields and short reaction time. The presented methodology offers several advantages such as easy work‐up procedure, reusability of the magnetic nanocatalyst, operational simplicity, green synthesis avoiding toxic reagents and solvent, mild reaction conditions, and no tedious column chromatographic separation.  相似文献   

13.
《中国化学》2017,35(7):1109-1116
We fabricate a novel cellulose acetate (CA) ultrafiltration membrane modified by block copolymer F127‐b‐ PDMAEMA, which is synthesized using F127 and DMAEMA via the ARGET ATRP method. Compared to conventional ultrafiltration membranes, the incorporation of both F127 and PDMAEMA can not only readily increase the hydrophilicity of the membrane, but also exhibit stimuli‐responsiveness to temperature and pH. Fourier transform infrared spectroscopy (FT‐IR), nuclear magnetic resonance spectroscopy (NMR), and gel permeation chromatography (GPC) are employed to analyze the structure of the F127‐b‐PDMAEMA. The membrane properties are evaluated via scanning electron microscope (SEM) imaging, porosity test, automatic target recognition Fourier transform infrared spectroscopy (ATR‐FTIR), water contact angle test and permeation test. The results indicate that the F127‐b‐PDMAEMA is an excellent pore agent, which contributes to an enhancement of the membrane in sensitivity to temperature and pH. The modified membrane also exhibits lower water contact angle (64.5°), which is attributed to the good anti‐fouling performance and high water permeation.  相似文献   

14.
A polypseudorotaxane (PPR) comprising γ‐cyclodextrin (γ‐CD) as host molecules and poly(N‐isopropylacrylamide) (PNIPAM) as a guest polymer is prepared via self‐assembly in aqueous solution. Due to the bulky pendant isopropylamide group, PNIPAM exhibits size‐selectivity toward self‐assembly with α‐, β‐, and γ‐CDs. It can fit into the cavity of γ‐CD to give rise to a PPR, but cannot pass through α‐CD and β‐CD under the same conditions. The ratio of the number of γ‐CD molecules to entrapped NIPAM repeat units is kept at 1:2.2 or 1:2.4, determined by 1H NMR spectroscopy and TGA analysis, respectively, indicating that there are more than 2 but less than 3 NIPAM repeat units included by one γ‐CD molecule. This finding opens new avenues to PPR‐based supramolecular polymers to be used as solid, stimuli‐responsive materials.  相似文献   

15.
1,3‐Dioxepane was polymerized with triflic acid as an initiator in the presence of acetic acid (AA) and hexane diacid. The structure of the poly(1,3‐dioxepane) (polyDOP) obtained was characterized by 1H NMR spectra and gel permeation chromatography. The molecular weights (MWs) were determined by vapor pressure osmometry. The results obtained in both systems were completely different from those in which low‐MW polyols were used as chain‐transfer agents. When the molar ratio of carboxylic acid to triflic acid was low, high‐MW polyDOP with a controlled MW and narrow MW distribution was obtained. The content of the ester group in the final product depended greatly on the molar ratio of AA to triflic acid. The polymerization mechanism is discussed. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 1232–1240, 2000  相似文献   

16.
《Electroanalysis》2003,15(14):1177-1184
The metal binding properties of glutathione (GSH) and their fragments γ‐Glu‐Cys and Cys‐Gly are of biological and environmental interest. In this work a differential pulse polarographic study of the Zn2+/γ‐Glu‐Cys and Zn2+/Cys‐Gly systems was carried out for a better understanding of the results obtained in previous studies on the Zn2+‐GSH system. In the case of γ‐Glu‐Cys, complexation with Zn2+ was not detected. In the case of Cys‐Gly, the parallel analysis, by multivariate curve resolution with alternating least squares, of data from the titration of peptide with metal and of metal with peptide suggested the presence of two types of bound Zn2+. This could be attributed to Zn2+ strongly bound to two sulfur atoms of two peptides, to form a complex of 1 : 2 stoichiometry, and to Zn2+ weakly bound to carboxylate and/or amino groups.  相似文献   

17.
Vapor‐phase aldol condensation of n‐butyraldehyde to 2‐ethyl‐2‐hexenal was studied at 1 atm and 150~ 300°C in a fixed‐bed, integral‐flow reactor by using NaX, KX, γ‐Al2O3 and Na/NaOH/γ‐Al2CO3 catalysts. Ion exchange of NaX zeolite with potassium acetate solution results in a decrease of crystallinity and apparent lowering of surface area, whereas the basic strength is enhanced. Treatment of γ‐Al2O3 with NaOH and Na causes a large decrease of the surface area but strong enhancement of the catalyst basicity. The catalytic activity on the basis of unit surface area is in the order Na/NaOH/γ‐Al2O3 < KXU < KXW < NaX >γ‐Al2O3, in accordance with the relative catalyst basic strength. The molar ratio of trimeric to dimeric products increases with increasing the reaction temperature and the catalyst basic strength except for Na/NaOH/γ‐Al2O3. Very high selectivity of 2‐ethyl‐2‐hexenal (>98.5%) was observed for reactions over NaX zeolite at 150°C. Based on the FT‐IR and the catalytic results, the reaction paths are proposed as follows: self‐aldol condensation of n‐butyraldehyde, followed by dehydration produces 2‐ethyl‐2‐hexenal, which then reacts with n‐butyraldehyde and successively dehydrates to 2,4‐diethyl‐2,4‐octadienal and 1,3,5‐triethylbenzene. For the reaction over NaX, the calculated Arrhenius frequency factor and activation energy are 314 mol/g·h and 32.6 kJ/mol, respectively.  相似文献   

18.
The self‐assembling nature and phase‐transition behavior of a novel class of triarm, star‐shaped polymer–peptide block copolymers synthesized by the combination of atom transfer radical polymerization and living ring‐opening polymerization of α‐amino acid‐N‐carboxyanhydride are demonstrated. The two‐step synthesis strategy adopted here allows incorporating polypeptides into the usual synthetic polymers via an amido–amidate nickelacycle intermediate, which is used as the macroinitiator for the growth of poly(γ‐benzyl‐L ‐glutamate). The characterization data are reported from analyses using gel permeation chromatography and infrared, 1H NMR, and 13C NMR spectroscopy. This synthetic scheme grants a facile way to prepare a wide range of polymer–peptide architectures with perfect microstructure control, preventing the formation of homopolypeptide contaminants. Studies regarding the supramolecular organization and phase‐transition behavior of this class of polymer‐block‐polypeptide copolymers have been accomplished with X‐ray diffraction, infrared spectroscopy, and thermal analyses. The conformational change of the peptide segment in the block copolymer has been investigated with variable‐temperature infrared spectroscopy. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 2774–2783, 2006  相似文献   

19.
Well‐defined pH‐responsive glycopolypeptides were prepared by polymer‐analogous aqueous amide coupling of d ‐glucosamine to poly(α,l ‐glutamic acid) (PGA) using the coupling agent 4‐(4,6‐dimethoxy‐1,3,5‐triazin‐2‐yl)‐4‐methylmorpholinium chloride (DMT‐MM) without any organic solvents, additives, or buffers. Degrees of substitution (DS) up to 80% can be achieved, and the DS is adjustable by the molar ratio of DMT‐MM to PGA repeating units. Successful glycosylation of both low MW and high MW PGA was confirmed by 1H NMR and FTIR spectroscopy as well as by an enhanced solubility at low pH. CD spectroscopy revealed that glycosylated PGAs with a DS up to 0.63 are able to undergo a pH‐responsive and reversible helix‐coil transition. However, for polymers with higher DS no transition occurs. A comparison with PGAs functionalized with monoethanolamine showed that the low helicity at high DS is not a steric effect due to the bulky sugar moieties, but a solvation effect. Preliminary turbidimetric tests with the lectin Concanavalin A indicate a biological activity of these glycosylated polypeptides. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 3925–3931  相似文献   

20.
High‐precision on‐line procedure for measurement of calcium isotopic ratio by coupling ion chromatography to multicollector inductively coupled plasma mass spectrometry was developed. Calcium separation from the sample matrix was achieved on an ion chromatography column—IonPac CS16—ID 3 mm connected with CERS 500 2 mm suppressor and followed by multicollector inductively coupled plasma mass spectrometry calcium isotopic ratio determination. Dry plasma mode was used with Aridus II desolvation system. To sustained samples with high level of total dissolved salts as well as account capacity of applied analytical column, the method has been optimized regarding calcium isotope ratio measurements with low‐resolution mass spectrometry. Mass discrimination and instrument drift were corrected by sample‐standard bracketing method using the 44Ca/42Ca isotope ratio of SRM 915a as a standard. Good accuracy and reasonable precision of calcium isotope ratio (generally 0.20‰ [2SD]) were achieved, which are comparable to off‐line Ca separation and continuous measurement. The reproducibility of the proposed analytical procedure was verified by measuring the SRM 915a standard as a sample randomly over 3 months (n = 56). Applicability of the protocol was demonstrated for matrix‐rich natural water samples, coral samples, and bone standard reference materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号