首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The asymmetric unit of O,O′‐dimethyl [(2,3,4,5,6‐pentafluorophenyl)hydrazinyl]phosphonate, C8H8F5N2O3P, is composed of two symmetry‐independent molecules with significant differences in the orientations of the C6F5 and OMe groups. In the crystal structure, a one‐dimensional assembly is mediated from classical N—H…O hydrogen bonds, which includes R22(8), D(2) and some higher‐order graph‐set motifs. By also considering weak C—H…O=P and C—H…O—C intermolecular interactions, a two‐dimensional network extends along the ab plane. The strengths of the hydrogen bonds were evaluated using quantum chemical calculations with the GAUSSIAN09 software package at the B3LYP/6‐311G(d,p) level of theory. The LP(O) to σ*(NH) and σ*(CH) charge‐transfer interactions were examined according to second‐order perturbation theory in natural bond orbital (NBO) methodology. The hydrogen‐bonded clusters of molecules, including N—H…O and C—H…O interactions, were constructed as input files for the calculations and the strengths of the hydrogen bonds are as follows: N—H…O [R22(8)] > N—H…O [D(2)] > C—H…O. The decomposed fingerprint plots show that the contribution portions of the F…H/H…F contacts in both molecules are the largest.  相似文献   

2.
Weak interactions between organic molecules are important in solid‐state structures where the sum of the weaker interactions support the overall three‐dimensional crystal structure. The sp‐C—H…N hydrogen‐bonding interaction is strong enough to promote the deliberate cocrystallization of a series of diynes with a series of dipyridines. It is also possible that a similar series of cocrystals could be formed between molecules containing a terminal alkyne and molecules which contain carbonyl O atoms as the potential hydrogen‐bond acceptor. I now report the crystal structure of two cocrystals that support this hypothesis. The 1:1 cocrystal of 1,4‐diethynylbenzene with 1,3‐diacetylbenzene, C10H6·C10H10O2, (1), and the 1:1 cocrystal of 1,4‐diethynylbenzene with benzene‐1,4‐dicarbaldehyde, C10H6·C8H6O2, (2), are presented. In both cocrystals, a strong nonconventional ethynyl–carbonyl sp‐C—H…O hydrogen bond is observed between the components. In cocrystal (1), the C—H…O hydrogen‐bond angle is 171.8 (16)° and the H…O and C…O hydrogen‐bond distances are 2.200 (19) and 3.139 (2) Å, respectively. In cocrystal (2), the C—H…O hydrogen‐bond angle is 172.5 (16)° and the H…O and C…O hydrogen‐bond distances are 2.25 (2) and 3.203 (2) Å, respectively.  相似文献   

3.
In the crystal structure of O,O′‐diethyl N‐(2,4,6‐trimethylphenyl)thiophosphate, C13H22NO2PS, two symmetrically independent thiophosphoramide molecules are linked through N—H…S and N—H…π hydrogen bonds to form a noncentrosymmetric dimer, with Z′ = 2. The strengths of the hydrogen bonds were evaluated using density functional theory (DFT) at the M06‐2X level within the 6‐311++G(d,p) basis set, and by considering the quantum theory of atoms in molecules (QTAIM). It was found that the N—H…S hydrogen bond is slightly stronger than the N—H…π hydrogen bond. This is reflected in differences between the calculated N—H stretching frequencies of the isolated molecules and the frequencies of the same N—H units involved in the different hydrogen bonds of the hydrogen‐bonded dimer. For these hydrogen bonds, the corresponding charge transfers, i.e. lp (or π)→σ*, were studied, according to the second‐order perturbation theory in natural bond orbital (NBO) methodology. Hirshfeld surface analysis was applied for a detailed investigation of all the contacts participating in the crystal packing.  相似文献   

4.
The structures of novel cocrystals of 4-nitropyridine N-oxide with benzenesulfonamide derivatives, namely, 4-nitrobenzenesulfonamide–4-nitropyridine N-oxide (1/1), C5H4N2O3·C6H6N2O4S, and 4-chlorobenzenesulfonamide–4-nitropyridine N-oxide (1/1), C6H6ClNO2S·C5H4N2O3, are stabilized by N—H…O hydrogen bonds, with the sulfonamide group acting as a proton donor. The O atoms of the N-oxide and nitro groups are acceptors in these interactions. The latter is a double acceptor of bifurcated hydrogen bonds. Previous studies on similar crystal structures indicated competition between these functional groups in the formation of hydrogen bonds, with the priority being for the N-oxide group. In contrast, the present X-ray studies indicate the existence of a hydrogen-bonding synthon including N—H…O(N-oxide) and N—H…O(nitro) bridges. We present here a more detailed analysis of the N-oxide–sulfonamide–nitro N—H…O ternary complex with quantum theory computations and the Quantum Theory of Atoms in Molecules (QTAIM) approach. Both interactions are present in the crystals, but the O atom of the N-oxide group is found to be a more effective proton acceptor in hydrogen bonds, with an interaction energy about twice that of the nitro-group O atoms.  相似文献   

5.
In the structure of 2‐(4‐chloroanilino)‐1,3,2λ4‐diazaphosphol‐2‐one, C12H11ClN3OP, each molecule is connected with four neighbouring molecules through (N—H)2…O hydrogen bonds. These hydrogen bonds form a tubular arrangement along the [001] direction built from R 33(12) and R 43(14) hydrogen‐bond ring motifs, combined with a C (4) chain motif. The hole constructed in the tubular architecture includes a 12‐atom arrangement (three P, three N, three O and three H atoms) belonging to three adjacent molecules hydrogen bonded to each other. One of the N—H groups of the diazaphosphole ring, not co‐operating in classical hydrogen bonding, takes part in an N—H…π interaction. This interaction occurs within the tubular array and does not change the dimension of the hydrogen‐bond pattern. The energies of the N—H…O and N—H…π hydrogen bonds were studied by NBO (natural bond orbital) analysis, using the experimental hydrogen‐bonded cluster of molecules as the input file for the chemical calculations. In the 1H NMR experiment, the nitrogen‐bound proton of the diazaphosphole ring has a high value of 17.2 Hz for the 2J H–P coupling constant.  相似文献   

6.
Aminobenzylnaphthols are a class of compounds containing a large aromatic molecular surface which makes them suitable candidates to study the role of C—H…π interactions. We have investigated the effect of methyl or methoxy substituents on the assembling of aromatic units by preparing and determining the crystal structures of (S,S)‐1‐{(4‐methylphenyl)[(1‐phenylethyl)amino]methyl}naphthalen‐2‐ol, C26H25NO, and (S,S)‐1‐{(4‐methoxyphenyl)[(1‐phenylethyl)amino]methyl}naphthalen‐2‐ol, C26H25NO2. The methyl group influenced the overall crystal packing even if the H atoms of the methyl group did not participate directly either in hydrogen bonding or C—H…π interactions. The introduction of the methoxy moiety caused the formation of new hydrogen bonds, in which the O atom of the methoxy group was directly involved. Moreover, the methoxy group promoted the formation of an interesting C—H…π interaction which altered the orientation of an aromatic unit.  相似文献   

7.
In the title compound, C13H16N22+·2C2H4O5P, the cation lies across a twofold rotation axis in space group Fdd2. The anions are linked into molecular ladders by two O—H⃛O hydrogen bonds [H⃛O = 1.73 and 1.77 Å, O⃛O = 2.538 (2) and 2.598 (3) Å, and O—H⃛O = 160 and 170°], these ladders are linked into sheets by a single type of N—H⃛O hydrogen bond [H⃛O = 1.75 Å, N⃛O = 2.624 (3) Å and N—H⃛O = 171°] and the sheets are linked into a three‐dimensional framework by a single type of C—H⃛O hydrogen bond [H⃛O = 2.48 Å, C⃛O = 3.419 (4) Å and C—H⃛O = 167°].  相似文献   

8.
The title compound, [Ni(C7H5O3)2(C10H24N4)], contains octahedral NiII in a centrosymmetric trans configuration with Ni—N distances of 2.0637 (17) and 2.0699 (16) Å and an Ni—O distance of 2.1100 (14) Å. The mol­ecules are linked by a single type of O—H?O hydrogen bond [O?O 2.618 (2) Å and O—H?O 161°] into two‐dimensional sheets; a singletype of N—H?O hydrogen bond [N?O 2.991 (2) Å and N—H?O 139°] links these sheets into a three‐dimensional framework.  相似文献   

9.
The synthesis and evaluation of the pharmacological activities of molecules containing the sulfonamide moiety have attracted interest as these compounds are important pharmacophores. The crystal structures of three closely related N‐aryl‐2,5‐dimethoxybenzenesulfonamides, namely N‐(2,3‐dichlorophenyl)‐2,5‐dimethoxybenzenesulfonamide, C14H13Cl2NO4S, (I), N‐(2,4‐dichlorophenyl)‐2,5‐dimethoxybenzenesulfonamide, C14H13Cl2NO4S, (II), and N‐(2,4‐dimethylphenyl)‐2,5‐dimethoxybenzenesulfonamide, C16H19NO4S, (III), are described. The asymmetric unit of (I) consists of two symmetry‐independent molecules, while those of (II) and (III) contain one molecule each. The molecular conformations are stabilized by different intramolecular interactions, viz. C—H…O interactions in (I), N—H…Cl and C—H…O interactions in (II), and C—H…O interactions in (III). The crystals of the three compounds display different supramolecular architectures built by various weak intermolecular interactions of the types C—H…O, C—H…Cl, C—H…π(aryl), π(aryl)–π(aryl) and Cl…Cl. A detailed Hirshfeld surface analysis of these compounds has also been conducted in order to understand the relationship between the crystal structures. The d norm and shape‐index surfaces of (I)–(III) support the presence of various intermolecular interactions in the three structures. Analysis of the fingerprint plots reveals that the greatest contribution to the Hirshfeld surfaces is from H…H contacts, followed by H…O/O…H contacts. In addition, comparisons are made with the structures of some related compounds. Putative N—H…O hydrogen bonds are observed in 29 of the 30 reported structures, wherein the N—H…O hydrogen bonds form either C (4) chain motifs or R 22(8) rings. Further comparison reveals that the characteristics of the N—H…O hydrogen‐bond motifs, the presence of other interactions and the resultant supramolecular architecture is largely decided by the position of the substituents on the benzenesulfonyl ring, with the nature and position of the substituents on the aniline ring exerting little effect. On the other hand, the crystal structures of (I)–(III) display several weak interactions other than the common N—H…O hydrogen bonds, resulting in supramolecular architectures varying from one‐ to three‐dimensional depending on the nature and position of the substituents on the aniline ring.  相似文献   

10.
It has been observed that when electron‐rich naphthyl rings are present in chalcones they can participate in π–π stacking interactions, and this can play an important role in orientating inhibitors within the active sites of enzymes, while chalcones containing heterocyclic substituents additionally exhibit fungistatic and fungicidal properties. With these considerations in mind, three new chalcones containing 2‐naphthyl substituents were prepared. 3‐(4‐Fluorophenyl)‐1‐(naphthalen‐2‐yl)prop‐2‐en‐1‐one, C19H13FO, (I), crystallizes with Z ′ = 2 in the space group P and the four molecules in the unit cell adopt an arrangement which resembles that in the space group P 21/a . Although 3‐(4‐bromophenyl)‐1‐(naphthalen‐2‐yl)prop‐2‐en‐1‐one, C19H13BrO, (II), with Z ′ = 1, is not isostructural with (I), the molecules of (I) and (II) adopt very similar conformations. In 1‐(naphthalen‐2‐yl)‐3‐(thiophen‐2‐yl)prop‐2‐en‐1‐one, C17H12OS, (III), the thiophene unit is disordered over two sets of atomic sites, with occupancies of 0.780 (3) and 0.220 (3), which are related by a near 180° rotation of the thiophene unit about its exocyclic C—C bond. The molecules of compound (I) are linked by three independent C—H…π(arene) hydrogen bonds to form centrosymmetric octamolecular aggregates, whereas the molecules of compound (II) are linked into molecular ladders by a combination of C—H…π(arene) and C—Br…π(arene) interactions, and those of compound (III) are linked into centrosymmetric dimers by C—H…π(thiophene) interactions.  相似文献   

11.
To enable a comparison between a C—H…X hydrogen bond and a halogen bond, the structures of two fluorous‐substituted pyridinium iodide salts have been determined. 4‐[(2,2‐Difluoroethoxy)methyl]pyridinium iodide, C8H10F2NO+·I, (1), has a –CH2OCH2CF2H substituent at the para position of the pyridinium ring and 4‐[(3‐chloro‐2,2,3,3‐tetrafluoropropoxy)methyl]pyridinium iodide, C9H9ClF4NO+·I, (2), has a –CH2OCH2CF2CF2Cl substituent at the para position of the pyridinium ring. In salt (1), the iodide anion is involved in one N—H…I and three C—H…I hydrogen bonds, which, together with C—H…F hydrogen bonds, link the cations and anions into a three‐dimensional network. For salt (2), the iodide anion is involved in one N—H…I hydrogen bond, two C—H…I hydrogen bonds and one C—Cl…I halogen bond; additional C—H…F and C—F…F interactions link the cations and anions into a three‐dimensional arrangement.  相似文献   

12.
Specific short contacts are important in crystal engineering. Hydrogen bonds have been particularly successful and together with halogen bonds can be useful for assembling small molecules or ions into crystals. The ionic constituents in the isomorphous 3,5‐dichloropyridinium (3,5‐diClPy) tetrahalometallates 3,5‐dichloropyridinium tetrachloridozincate(II), (C5H4Cl2N)2[ZnCl4] or (3,5‐diClPy)2ZnCl4, 3,5‐dichloropyridinium tetrabromidozincate(II), (C5H4Cl2N)2[ZnBr4] or (3,5‐diClPy)2ZnBr4, and 3,5‐dichloropyridinium tetrabromidocobaltate(II), (C5H4Cl2N)2[CoBr4] or (3,5‐diClPy)2CoBr4, arrange according to favourable electrostatic interactions. Cations are preferably surrounded by anions and vice versa ; rare cation–cation contacts are associated with an antiparallel dipole orientation. N—H…X (X = Cl and Br) hydrogen bonds and X X halogen bonds compete as closest contacts between neighbouring residues. The former dominate in the title compounds; the four symmetrically independent pyridinium N—H groups in each compound act as donors in charge‐assisted hydrogen bonds, with halogen ligands and the tetrahedral metallate anions as acceptors. The M X coordinative bonds in the latter are significantly longer if the halide ligand is engaged in a classical X …H—N hydrogen bond. In all three solids, triangular halogen‐bond interactions are observed. They might contribute to the stabilization of the structures, but even the shortest interhalogen contacts are only slightly shorter than the sum of the van der Waals radii.  相似文献   

13.
In the crystal structures of the title compounds, C11H9FN2O, (I), and C13H12FNO4, (II), the molecules are joined pairwise via different hydrogen bonds and the constituent pairs are crosslinked by weak C—H...O hydrogen bonds. The basic structural motif in (I), which is partially disordered, comprises pairs of molecules arranged in an antiparallel fashion which enables C—H...N[triple‐bond]C interactions. The pairs of molecules are crosslinked by two weak C—H...O hydrogen bonds. The constituent pair in (II) is formed by intramolecular bifurcated C—H...O/O′ and combined inter‐ and intramolecular N—H...O hydrogen bonds. In both structures, F atoms form weak C—F...H—C interactions with the H atoms of the two neighbouring methyl groups, the H...F separations being 2.59/2.80 and 2.63/2.71 Å in (I) and (II), respectively. The bond orders in the molecules, estimated using the natural bond orbitals (NBO) formalism, correlate with the changes in bond lengths. Deviations from the ideal molecular geometry are explained by the concept of non‐equivalent hybrid orbitals. The existence of possible conformers of (I) and (II) is analysed by molecular calculations at the B3LYP/6–31+G** level of theory.  相似文献   

14.
Notwithstanding its simple structure, the chemistry of nitric oxide (NO) is complex. As a radical, NO is highly reactive. NO also has profound effects on the cardiovascular system. In order to regulate NO levels, direct therapeutic interventions include the development of numerous NO donors. Most of these donors release NO in a single high‐concentration burst, which is deleterious. N‐Nitrosated secondary amines release NO in a slow, sustained, and rate‐tunable manner. Two new precursors to sustained NO‐releasing materials have been characterized. N‐[2‐(3,4‐Dimethoxyphenyl)ethyl]‐2,4‐dinitroaniline, C16H17N3O6, (I), crystallizes with one independent molecule in the asymmetric unit. The adjacent amine and nitro groups form an intramolecular N—H…O hydrogen bond. The anti conformation about the phenylethyl‐to‐aniline C—N bond leads to the planes of the arene and aniline rings being approximately perpendicular. Molecules are linked into dimers by weak intermolecular N—H…O hydrogen bonds such that each amine H atom participates in a three‐center interaction with two nitro O atoms. The dimers pack so that the arene rings of adjacent molecules are not parallel and π–π interactions do not appear to be favored. N‐(4‐Methylsulfonyl‐2‐nitrophenyl)‐l ‐phenylalanine, C16H16N2O6S, (II), with an optically active center, also crystallizes with one unique molecule in the asymmetric unit. The l enantiomer was established via the configuration of the starting material and was confirmed by refinement of the Flack parameter. As in (I), there is an intramolecular N—H…O hydrogen bond between adjacent amine and nitro groups. The conformation of the molecule is such that the arene rings display a dihedral angle of ca 60°. Unlike (I), molecules are not linked via intermolecular N—H…O hydrogen bonds. Rather, the carboxylic acid H atom forms a classic, approximately linear, O—H…O hydrogen bond with a sulfone O atom. Pairs of molecules related by twofold rotation axes are linked into dimers by two such interactions. The packing pattern features a zigzag arrangement of the arene rings without apparent π–π interactions. These structures are compared with reported analogues, revealing significant differences in molecular conformation, intermolecular interactions, and packing that result from modest changes in functional groups. The structures are discussed in terms of potential NO‐release capability.  相似文献   

15.
In the title compound, C22H23N5O4, the mol­ecules are linked into chains by a three‐centre N—H?(N,O) hydrogen bond, reinforced by a two‐centre C—H?O hydrogen bond, and the chains are further linked into sheets by a combination of C—H?O and C—H?π(arene) hydrogen bonds.  相似文献   

16.
The title salts, 4‐chloroanilinium hydrogen phthalate (PCAHP), C6H7ClN+·C8H5O4, 2‐hydroxyanilinium hydrogen phthalate (2HAHP), C6H8NO+·C8H5O4, and 3‐hydroxyanilinium hydrogen phthalate (3HAHP), C6H8NO+·C8H5O4, all crystallize in the space group P21/c. The asymmetric unit of 2HAHP contains two independent ion pairs. The hydrogen phthalate ions of 2HAHP and 3HAHP show a short intramolecular O—H...O hydrogen bond, with O...O distances ranging from 2.3832 (15) to 2.3860 (14) Å. N—H...O and O—H...O hydrogen bonds, together with short C—H...O contacts in PCAHP and 3HAHP, generate extended hydrogen‐bond networks. PCAHP forms a two‐dimensional supramolecular sheet extending in the (100) plane, whereas 2HAHP has a supramolecular chain running parallel to the [100] direction and 3HAHP has a two‐dimensional network extending parallel to the (001) plane.  相似文献   

17.
The crystal structures of 2′,4′‐di­hydroxy‐3‐methoxy‐α,β‐di­hydro­chalcone, C16H16O4, and 2′,4‐di­hydroxy‐α,β‐di­hydro­chalcone, C15H14O3, have been determined. In both compounds, the structure consists of two nearly planar six‐membered aromatic rings connected by a propanal chain, which is bent in the methoxy compound and almost straight in the other compound. In the crystal structures, the molecular units of both compounds are linked by O—H⋯O hydrogen bonds to form infinite one‐dimensional chains. Hydro­gen bonds and C—H⋯O contacts in the crystal structures were studied by topological analysis of charge density based on Hartree–Fock calculations. Almost all of the investigated C—H⋯O contacts should be characterized as weak hydrogen bonds.  相似文献   

18.
In the crystal structure of the title compound, C11H13NO2, there are strong inter­molecular O—H⋯N hydrogen bonds which, together with weak intra­molecular C—H⋯O hydrogen bonds, lead to the formation of infinite chains of mol­ecules, held together by weak inter­molecular C—H⋯O hydrogen bonds. A theoretical investigation of the hydrogen bonding, based on density functional theory (DFT) employing periodic boundary conditions, is in agreement with the experimental data. The cluster approach shows that the influence of the crystal field and of hydrogen‐bond formation are responsible for the deformation of the 2‐oxazoline ring, which is not planar and adopts a 4T3 (C3TC2) conformation.  相似文献   

19.
The title compound, [CdCl2(C7H6N2)4]·4C7H6N2, consists of a Cd(Bzim)4Cl2 complex (Bzim is benzimidazole) lying on a fourfold rotation axis in the space group P4nc, and four benzimidazole mol­ecules which are linked to the coordinated benzimidazole unit by N—H⋯N hydrogen bonds. One N—H⋯Cl and three C—H⋯π hydrogen bonds link these units into a three‐dimensional supra­molecular structure.  相似文献   

20.
The title compound, C21H28O4, has a 4‐acetoxy substituent positioned on the steroid α face. The six‐membered ring A assumes a conformation intermediate between 1α,2β‐half chair and 1α‐sofa. A long Csp3—Csp3 bond is observed in ring B and reproduced in quantum‐mechanical ab initio calculations of the isolated molecule using a molecular‐orbital Hartree–Fock method. Cohesion of the crystal can be attributed to van der Waals interactions and weak C—H...O hydrogen bonds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号