首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
In the title compound, 4‐iodoanilinium 2‐carboxy‐6‐nitrobenzoate, C6H7IN+·C8H4NO6, the anions are linked by an O—H...O hydrogen bond [H...O = 1.78 Å, O...O = 2.614 (3) Å and O—H...O = 171°] into C(7) chains, and these chains are linked by two two‐centre N—H...O hydrogen bonds [H...O = 1.86 and 1.92 Å, N...O = 2.700 (3) and 2.786 (3) Å, and N—H...O = 153 and 158°] and one three‐centre N—H...(O)2 hydrogen bond [H...O = 2.02 and 2.41 Å, N...O = 2.896 (3) and 2.789 (3) Å, N—H...O = 162 and 105°, and O...H...O = 92°], thus forming sheets con­taining R(6), R(8), R(13) and R(18) rings.  相似文献   

2.
Mixtures of 4‐carboxypyridinium perchlorate or 4‐carboxypyridinium tetrafluoroborate and 18‐crown‐6 (1,4,7,10,13,16‐hexaoxacyclooctadecane) in ethanol and water solution yielded the title supramolecular salts, C6H6NO2+·ClO4·C12H24O6·2H2O and C6H6NO2+·BF4·C12H24O6·2H2O. Based on their similar crystal symmetries, unit cells and supramolecular assemblies, the salts are essentially isostructural. The asymmetric unit in each structure includes one protonated isonicotinic acid cation and one crown ether molecule, which together give a [(C6H6NO2)(18‐crown‐6)]+ supramolecular cation. N—H...O hydrogen bonds between the protonated N atoms and a single O atom of each crown ether result in the 4‐carboxypyridinium cations `perching' on the 18‐crown‐6 molecules. Further hydrogen‐bonding interactions involving the supramolecular cation and both water molecules form a one‐dimensional zigzag chain that propagates along the crystallographic c direction. O—H...O or O—H...F hydrogen bonds between one of the water molecules and the anions fix the anion positions as pendant upon this chain, without further increasing the dimensionality of the supramolecular network.  相似文献   

3.
In order to investigate the relative stability of N—H...O and N—H...S hydrogen bonds, we cocrystallized the antithyroid drug 6‐propyl‐2‐thiouracil with two complementary heterocycles. In the cocrystal pyrimidin‐2‐amine–6‐propyl‐2‐thiouracil (1/2), C4H5N3·2C7H10N2OS, (I), the `base pair' is connected by one N—H...S and one N—H...N hydrogen bond. Homodimers of 6‐propyl‐2‐thiouracil linked by two N—H...S hydrogen bonds are observed in the cocrystal N‐(6‐acetamidopyridin‐2‐yl)acetamide–6‐propyl‐2‐thiouracil (1/2), C9H11N3O2·2C7H10N2OS, (II). The crystal structure of 6‐propyl‐2‐thiouracil itself, C7H10N2OS, (III), is stabilized by pairwise N—H...O and N—H...S hydrogen bonds. In all three structures, N—H...S hydrogen bonds occur only within R22(8) patterns, whereas N—H...O hydrogen bonds tend to connect the homo‐ and heterodimers into extended networks. In agreement with related structures, the hydrogen‐bonding capability of C=O and C=S groups seems to be comparable.  相似文献   

4.
The structures of the 1:1 proton‐transfer compounds of 4,5‐dichlorophthalic acid with 8‐hydroxyquinoline, 8‐aminoquinoline and quinoline‐2‐carboxylic acid (quinaldic acid), namely anhydrous 8‐hydroxyquinolinium 2‐carboxy‐4,5‐dichlorobenzoate, C9H8NO+·C8H3Cl2O4, (I), 8‐aminoquinolinium 2‐carboxy‐4,5‐dichlorobenzoate, C9H9N2+·C8H3Cl2O4, (II), and the adduct hydrate 2‐carboxyquinolinium 2‐carboxy‐4,5‐dichlorobenzoate quinolinium‐2‐carboxylate monohydrate, C10H8NO2+·C8H3Cl2O4·C10H7NO2·H2O, (III), have been determined at 130 K. Compounds (I) and (II) are isomorphous and all three compounds have one‐dimensional hydrogen‐bonded chain structures, formed in (I) through O—H...Ocarboxyl extensions and in (II) through N+—H...Ocarboxyl extensions of cation–anion pairs. In (III), a hydrogen‐bonded cyclic R22(10) pseudo‐dimer unit comprising a protonated quinaldic acid cation and a zwitterionic quinaldic acid adduct molecule is found and is propagated through carboxylic acid O—H...Ocarboxyl and water O—H...Ocarboxyl interactions. In both (I) and (II), there are also cation–anion aromatic ring π–π associations. This work further illustrates the utility of both hydrogen phthalate anions and interactive‐group‐substituted quinoline cations in the formation of low‐dimensional hydrogen‐bonded structures.  相似文献   

5.
The title compounds, p‐phenetidinium hydrogen phthalate (or 4‐ethoxyanilinium 2‐carboxybenzoate), C8H12NO+·C8H5O4, (I), and cyclohexylaminium hydrogen phthalate hemihydrate (or cyclohexylaminium 2‐carboxybenzoate hemihydrate), C6H14N+·C8H5O4·0.5H2O, (II), form two‐ and one‐dimensional supramolecular networks, respectively. In (I), the anionic–cationic network consists of R32(6) and R44(16) hydrogen‐bonded rings forming a two‐dimensional sheet along the (001) plane. In (II), O—H...O hydrogen bonds connect the glide‐related anions, generating a supramolecular chain running parallel to [001] to which the cations are linked to form one‐dimensional channels along [001]. The solvent water molecules, which reside on twofold axes, are trapped inside the molecular channels by N—H...O and O—H...O hydrogen bonds.  相似文献   

6.
7.
The structures of two ammonium salts of 3‐carboxy‐4‐hydroxybenzenesulfonic acid (5‐sulfosalicylic acid, 5‐SSA) have been determined at 200 K. In the 1:1 hydrated salt, ammonium 3‐carboxy‐4‐hydroxybenzenesulfonate monohydrate, NH4+·C7H5O6S·H2O, (I), the 5‐SSA monoanions give two types of head‐to‐tail laterally linked cyclic hydrogen‐bonding associations, both with graph‐set R44(20). The first involves both carboxylic acid O—H...Owater and water O—H...Osulfonate hydrogen bonds at one end, and ammonium N—H...Osulfonate and N—H...Ocarboxy hydrogen bonds at the other. The second association is centrosymmetric, with end linkages through water O—H...Osulfonate hydrogen bonds. These conjoined units form stacks down c and are extended into a three‐dimensional framework structure through N—H...O and water O—H...O hydrogen bonds to sulfonate O‐atom acceptors. Anhydrous triammonium 3‐carboxy‐4‐hydroxybenzenesulfonate 3‐carboxylato‐4‐hydroxybenzenesulfonate, 3NH4+·C7H4O6S2−·C7H5O6S, (II), is unusual, having both dianionic 5‐SSA2− and monoanionic 5‐SSA species. These are linked by a carboxylic acid O—H...O hydrogen bond and, together with the three ammonium cations (two on general sites and the third comprising two independent half‐cations lying on crystallographic twofold rotation axes), give a pseudo‐centrosymmetric asymmetric unit. Cation–anion hydrogen bonding within this layered unit involves a cyclic R33(8) association which, together with extensive peripheral N—H...O hydrogen bonding involving both sulfonate and carboxy/carboxylate acceptors, gives a three‐dimensional framework structure. This work further demonstrates the utility of the 5‐SSA monoanion for the generation of stable hydrogen‐bonded crystalline materials, and provides the structure of a dianionic 5‐SSA2− species of which there are only a few examples in the crystallographic literature.  相似文献   

8.
In cytosinium succinate (systematic name: 4‐amino‐2‐oxo‐2,3‐dihydropyrimidin‐1‐ium 3‐carboxypropanoate), C4H6N3O+·C4H5O4, (I), the cytosinium cation forms one‐dimensional self‐assembling patterns by intermolecular N—H...O hydrogen bonding, while in cytosinium 4‐nitrobenzoate cytosine monohydrate [systematic name: 4‐amino‐2‐oxo‐2,3‐dihydropyrimidin‐1‐ium 4‐nitrobenzoate 4‐aminopyrimidin‐2(1H)‐one solvate monohydrate], C4H6N3O+·C7H4NO4·C4H5N3O·H2O, (II), the cytosinium–cytosine base pair, held together by triple hydrogen bonds, leads to one‐dimensional polymeric ribbons via double N—H...O hydrogen bonds. This study illustrates clearly the different alignment of cytosine molecules in the crystal packing and their ability to form supramolecular hydrogen‐bonded networks with the anions.  相似文献   

9.
The asymmetric unit of the optically resolved title salt, C8H12N+·C4H5O4S, contains a 1‐phenylethanaminium monocation and a thiomalate (3‐carboxy‐2‐sulfanylpropanoate) monoanion. The absolute configurations of the cation and the anion are determined to be S and R, respectively. In the crystal, cation–anion N—H...O hydrogen bonds, together with anion–anion O—H...O and S—H...O hydrogen bonds, construct a two‐dimensional supramolecular sheet parallel to the ab plane. The two‐dimensional sheet is linked with the upper and lower sheets through C—H...π interactions to stack along the c axis.  相似文献   

10.
The title compound, C6H9N2O2+·Cl·C6H8N2O2·H2O, contains one 2‐(3‐methyl‐1H‐imidazol‐3‐ium‐1‐yl)acetate inner salt molecule, one 1‐carboxymethyl‐3‐methyl‐1H‐imidazol‐3‐ium cation, one chloride ion and one water molecule. In the extended structure, chloride anions and water molecules are linked via O—H...Cl hydrogen bonds, forming an infinite one‐dimensional chain. The chloride anions are also linked by two weak C—H...Cl interactions to neighbouring methylene groups and imidazole rings. Two imidazolium moieties form a homoconjugated cation through a strong and asymmetric O—H...O hydrogen bond of 2.472 (2) Å. The IR spectrum shows a continuous D‐type absorption in the region below 1300 cm−1 and is different to that of 1‐carboxymethyl‐3‐methylimidazolium chloride [Xuan, Wang & Xue (2012). Spectrochim. Acta Part A, 96 , 436–443].  相似文献   

11.
Maleic acid and fumaric acid, the Z and E isomers of butenedioic acid, form 1:1 adducts with 2‐amino‐1,3‐thiazole, namely 2‐amino‐1,3‐thiazolium hydrogen maleate (2ATHM), C3H5N2S+·C4H3O4, and 2‐amino‐1,3‐thiazolium hydrogen fumarate (2ATHF), C3H5N2S+·C4H3O4, respectively. In both compounds, protonation of the ring N atom of the 2‐amino‐1,3‐thiazole and deprotonation of one of the carboxyl groups are observed. The asymmetric unit of 2ATHF contains three independent ion pairs. The hydrogen maleate ion of 2ATHM shows a short intramolecular O—H...O hydrogen bond with an O...O distance of 2.4663 (19) Å. An extensive hydrogen‐bonded network is observed in both compounds, involving N—H...O and O—H...O hydrogen bonds. 2ATHM forms two‐dimensional sheets parallel to the ab plane, extending as independent parallel sheets along the c axis, whereas 2ATHF forms two‐dimensional zigzag layers parallel to the bc plane, extending as independent parallel layers along the a axis.  相似文献   

12.
The structure of trans‐3‐(3‐pyridyl)acrylic acid, C8H7NO2, (I), possesses a two‐dimensional hydrogen‐bonded array of supramolecular ribbons assembled via heterodimeric synthons between the pyridine and carboxyl groups. This compound is photoreactive in the solid state as a result of close contacts between the double bonds of neighbouring molecules [3.821 (1) Å] along the a axis. The crystal structure of the photoproduct, rctt‐3,3′‐(3,4‐dicarboxycyclobutane‐1,2‐diyl)dipyridinium dichloride, C16H16N2O42+·2Cl, (II), consists of a three‐dimensional hydrogen‐bonded network built from crosslinking of helical chains integrated by self‐assembly of dipyridinium cations and Cl anions via different O—H...Cl, C—H...Cl and N+—H...Cl hydrogen‐bond interactions.  相似文献   

13.
Crystals of the title compound, C4H8N5+·C2F3O2, are built up of singly protonated 2,4‐diamino‐6‐methyl‐1,3,5‐triazin‐1‐ium cations and trifluoroacetate anions. The CF3 group of the anion is disordered. The oppositely charged ions interact via almost linear N—H...O hydrogen bonds, forming a CF3COO...C4H8N5+ unit. Two units related by an inversion centre interact through a pair of N—H...N hydrogen bonds, forming planar (CF3COO...C4H8N5+...C4H8N5+·CF3COO) aggregates that are linked by a pair of N—H...O hydrogen bonds into chains running along the c axis.  相似文献   

14.
The structures of the anhydrous 1:1 proton‐transfer compounds of 4,5‐dichlorophthalic acid (DCPA) with the monocyclic heteroaromatic Lewis bases 2‐aminopyrimidine, 3‐(aminocarbonyl)pyridine (nicotinamide) and 4‐(aminocarbonyl)pyridine (isonicotinamide), namely 2‐aminopyrimidinium 2‐carboxy‐4,5‐dichlorobenzoate, C4H6N3+·C8H3Cl2O4, (I), 3‐(aminocarbonyl)pyridinium 2‐carboxy‐4,5‐dichlorobenzoate, C6H7N2O+·C8H3Cl2O4, (II), and the unusual salt adduct 4‐(aminocarbonyl)pyridinium 2‐carboxy‐4,5‐dichlorobenzoate–methyl 2‐carboxy‐4,5‐dichlorobenzoate (1/1), C6H7N2O+·C8H3Cl2O4·C9H6Cl2O4, (III), have been determined at 130 K. Compound (I) forms discrete centrosymmetric hydrogen‐bonded cyclic bis(cation–anion) units having both R22(8) and R12(4) N—H...O interactions. In (II), the primary N—H...O‐linked cation–anion units are extended into a two‐dimensional sheet structure via amide–carboxyl and amide–carbonyl N—H...O interactions. The structure of (III) reveals the presence of an unusual and unexpected self‐synthesized methyl monoester of the acid as an adduct molecule, giving one‐dimensional hydrogen‐bonded chains. In all three structures, the hydrogen phthalate anions are essentially planar with short intramolecular carboxyl–carboxylate O—H...O hydrogen bonds [O...O = 2.393 (8)–2.410 (2) Å]. This work provides examples of low‐dimensional 1:1 hydrogen‐bonded DCPA structure types, and includes the first example of a discrete cyclic `heterotetramer.' This low dimensionality in the structures of the 1:1 aromatic Lewis base salts of the parent acid is generally associated with the planar DCPA anion species.  相似文献   

15.
The three pyran structures 6‐methylamino‐5‐nitro‐2,4‐diphenyl‐4H‐pyran‐3‐carbonitrile, C19H15N3O3, (I), 4‐(3‐fluorophenyl)‐6‐methylamino‐5‐nitro‐2‐phenyl‐4H‐pyran‐3‐carbonitrile, C19H14FN3O3, (II), and 4‐(4‐chlorophenyl)‐6‐methylamino‐5‐nitro‐2‐phenyl‐4H‐pyran‐3‐carbonitrile, C19H14ClN3O3, (III), differ in the nature of the aryl group at the 4‐position. The heterocyclic ring in all three structures adopts a flattened boat conformation. The dihedral angle between the pseudo‐axial phenyl substituent and the flat part of the pyran ring is 89.97 (1)° in (I), 80.11 (1)° in (II) and 87.77 (1)° in (III). In all three crystal structures, a strong intramolecular N—H...O hydrogen bond links the flat conjugated H—N—C=C—N—O fragment into a six‐membered ring. In (II), molecules are linked into dimeric aggregates by N—H... O(nitro) hydrogen bonds, generating an R22(12) graph‐set motif. In (III), intermolecular N—H...N and C—H...N hydrogen bonds link the molecules into a linear chain pattern generating C(8) and C(9) graph‐set motifs, respectively.  相似文献   

16.
The supramolecular architectures of three dicarboxylic acid–biimidazole compounds, namely, 2,2′‐biimidazolium malonate, C6H8N42+·C3H2O42−, (I), 2,2′‐bi(1H‐imidazole) succinic acid, C6H6N4·C4H6O4, (II), and 2,2′‐biimidazolium 2,2′‐iminiodiacetate chloride, C6H8N42+·C4H6NO4·Cl, (III), are reported. The crystal structures are assembled by the same process, namely double conventional N—H...O or O—H...N hydrogen bonds link the dicarboxylates and biimidazoles to form tapes, which are stacked in parallel through lone‐pair–aromatic interactions between carbonyl O atoms and biimidazole groups and are further linked via weak C—H...O interactions. The C=O...π interactions involved in stacking the tapes in (II) and the C—H...O interactions involved in linking the tapes in (II) and (III) demonstrate the crucial role of these interactions in the crystal packing. There is crystallographically imposed symmetry in all three structures. In (I), two independent malonate anions have their central C atoms on twofold axes and two biimidazolium dications each lie about independent inversion centres; in (II), the components lie about inversion centres, while in (III), the unique cation lies about an inversion centre and the iminiodiacetate and chloride anions lie across and on a mirror plane, respectively.  相似文献   

17.
In bis(2‐aminoanilinum) fumarate, 2C6H9N2+·C4H2O42−, (I), the asymmetric unit consists of two aminoanilinium cations and one fumarate dianion, whereas in 3‐methylanilinium hydrogen fumarate, C7H10N+·C4H3O4, (II), and 4‐chloroanilinium hydrogen fumarate, C6H7ClN+·C4H3O4, (III), the asymmetric unit contains two symmetry‐independent hydrogen fumate anions and anilinium cations with a slight difference in their geometric parameters; the two salts are isostructural. In (II) and (III), the carboxylic acid H atoms of the anions are disordered across both ends of the anion, with equal site occupancies of 0.50. Both the 4‐chloroanilinium cations of (III) are disordered over two orientations with major occupancies fixed at 0.60 in each case. The hydrogen fumarate anions of (II) and (III) form one‐dimensional anionic chains linked through O—H...O hydrogen bonds. Salts (II) and (III) form two‐dimensional supramolecular sheets built from R44(16), R44(18), R55(25) and C22(14) motifs extending parallel to the (010) plane, whereas in (I), an (010) sheet is formed built from two R43(13) motifs, two R22(9) motifs and an R44(18) motif.  相似文献   

18.
Two inclusion compounds of dithiobiurea and tetrapropylammonium and tetrabutylammonium are characterized and reported, namely tetrapropylammonium carbamothioyl(carbamothioylamino)azanide, C12H28N+·C2H5N4S2, (1), and tetrabutylammonium carbamothioyl(carbamothioylamino)azanide, C16H36N+·C2H5N4S2, (2). The results show that in (1), the dithiobiurea anion forms a dimer via N—H...N hydrogen bonds and the dimers are connected into wide hydrogen‐bonded ribbons. The guest tetrapropylammonium cation changes its character to become the host molecule, generating pseudo‐channels containing the aforementioned ribbons by C—H...S contacts, yielding the three‐dimensional network structure. In comparison, in (2), the dithiobiurea anions are linked via N—H...S interactions, producing one‐dimensional chains which pack to generate two‐dimensional hydrogen‐bonded layers. These layers accommodate the guest tetrabutylammonium cations, resulting in a sandwich‐like layer structure with host–guest C—H...S contacts.  相似文献   

19.
In the title compounds, 4‐carboxyanilinium bromide, C7H8NO2+·Br, (I), and 4‐acetylanilinium bromide, C8H10NO+·Br, (II), each asymmetric unit contains a discrete cation with a protonated amino group and a halide anion. Both crystal structures are characterized by two‐dimensional hydrogen‐bonded networks. The ions in (I) are connected via N—H...Br, N—H...O and O—H...Br hydrogen bonds, with three characteristic graph‐set motifs, viz. C(8), C21(4) and R32(8). The centrosymmetric hydrogen‐bonded R22(8) dimer motif characteristic of carboxylic acids is absent. The ions in (II) are connected via N—H...Br and N—H...O hydrogen bonds, with two characteristic graph‐set motifs, viz. C(8) and R42(8). The significance of this study lies in its illustration of the differences between the supramolecular aggregations in two similar compounds. The presence of the methyl group in (II) at the site corresponding to the hydroxyl group in (I) results in a significantly different hydrogen‐bonding arrangement.  相似文献   

20.
Cocrystallization of imidazole or 4‐methylimidazole with 2,2′‐dithiodibenzoic acid from methanol solution yields the title 2:1 and 1:1 organic salts, 2C3H5N2+·C14H10O4S22−, (I), and C4H7N2+·C14H10O4S2, (II), respectively. Compound (I) crystallizes in the monoclinic C2/c space group with the mid‐point of the S—S bond lying on a twofold axis. The component ions in (I) are linked by intermolecular N—H...O hydrogen bonds to form a two‐dimensional network, which is further linked by C—H...O hydrogen bonds into a three‐dimensional network. In contrast, by means of N—H...O, N—H...S and O—H...O hydrogen bonds, the component ions in (II) are linked into a tape and adjacent tapes are further linked by π–π, C—H...O and C—H...π interactions, resulting in a three‐dimensional network.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号