首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Novel block copolymers, poly(3‐hexylthiophene)‐b‐poly(ethylene oxide) (P3HT‐b‐PEO) were synthesized via Suzuki coupling reaction of P3HT and PEO homopolymers. The copolymers were characterized by NMR, gel permeation chromatography, differential scanning calorimeter, and UV–vis measurements. A series of devices based on the block copolymers with a fullerene derivative were evaluated after thermal or solvent annealing. The device using P3HT‐b‐PEO showed higher efficiency than using P3HT blend after thermal annealing. Phase‐separated structures in the thin films of block copolymer blends were investigated by atomic force microscopy to clarify the relationship between morphologies constructed by annealing and the device performance. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

2.
Regioregular poly(3‐hexylthiophene)‐b‐poly(1H,1H‐dihydro perfluorooctyl methacrylate) (P3HT‐b‐PFOMA) diblock copolymers were synthesized by atom transfer radical polymerization of fluorooctyl methacrylate using bromoester terminated poly(3‐hexylthiophene) macroinitiators in order to investigate their morphological properties. The P3HT macroinitiator was previously prepared by chemical modification of hydroxy terminated P3HT. The block copolymers were well characterized by 1H NMR spectroscopy and gel permeation chromatography. Transmission electron microscopy was used to investigate the nanostructured morphology of the diblock copolymers. The block copolymers are able to undergo microphase separation and self‐assemble into well‐defined and organized nanofibrillar‐like micellar morphology. The development of the morphology of P3HT‐b‐PFOMA block copolymers was investigated after annealing in solvent vapor and also in supercritical CO2. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

3.
Conjugated block copolymers are potentially useful for organic electronic applications and the study of interfacial charge and energy transfer processes; yet few synthetic methods are available to prepare polymers with well‐defined conjugated blocks. Here, we report the synthesis and thin film morphology of a series of conjugated poly(3‐hexylthiophene)‐block‐poly(9,9‐dioctylfluorene) (P3HT‐b‐PF) and poly(3‐dodecylthiophene)‐block‐poly(9,9‐dioctylfluorene) (P3DDT‐b‐PF) block copolymers prepared by functional external initiators and click chemistry. Functional group control is quantified by proton nuclear magnetic resonance spectroscopy, size‐exclusion chromatography, and matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry. The thin film morphology of the resulting all‐conjugated block copolymers is analyzed by a combination of grazing‐incidence X‐ray scattering, atomic force microscopy, and transmission electron microscopy. Crystallization of the P3HT or P3DDT blocks is present in thin films for all materials studied, and P3DDT‐b‐PF films exhibit significant PF/P3DDT co‐crystallization. Processing conditions are found to impact thin film crystallinity and orientation of the π–π stacking direction of polymer crystallites. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 154–163  相似文献   

4.
The crystallization‐dominated and microphase separation/crystallization‐coexisted structure of the all‐conjugated diblock copolymers poly(2,5‐dihexyloxy‐p‐phenylene)‐block‐(3‐hexylthiophene) (PPP‐b‐P3HT, denoted as BmTn) with different block compositions was affected by the aggregation state of the diblock copolymers in solvents with different solubilities. For B34T66, B62T38, and B75T25, the coexistence of microphase separation and crystallization was obtained in good solvent with few crystalline aggregates. For B34T66 with a longer P3HT block, densely stacked fiber crystal structures in thin films were found by using marginal solvents with crystalline aggregations in solutions. As for B62T38 and B75T25 with shorter P3HT block and longer PPP block, crystal structures were obtained by the use of solvents with a much larger solubility difference of the two blocks. Thus, microphase‐separated structures are prone to form from solutions with coil conformation and fiber crystals from solutions with larger aggregates, which resulted in the increased crystallinity. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 1718–1726  相似文献   

5.
A series of all‐conjugated diblock and triblock copolymers comprised of poly(naphthalene diimide) (PNDI)‐based n‐type and the poly(3‐hexylthiophene) (P3HT) segments could be synthesized via the Kumada catalyst‐transfer polycondensation process. The crystalline structures and chain orientation of the block copolymer thin films were systematically studied by grazing incident wide‐angle X‐ray scattering (GIWAXS). The GIWAXS results indicated that both the P3HT and PNDI segments in the block copolymers form exclusive crystalline domains in which the P3HT domain aligns with an edge‐on rich orientation, and the PNDI domain aligns with a face‐on rich orientation. In contrast, the blend films of the P3HT and PNDI homopolymers also show two distinguished crystalline domains in which the P3HT domain aligns with an edge‐on rich orientation, and the PNDI domains align in different ways depending on the chemical structure of n‐type polymers, that is, PNDI1Th is isotropically dispersed, while PNDI2Th aligns with a face‐on rich orientation. In addition, the effect of thermal annealing on the crystalline behavior of the block copolymers is reported. The GIWAXS results indicated that thermal annealing increases the crystallinity of both segments without affecting their chain orientation. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 1139–1148  相似文献   

6.
We report the synthesis, morphology, and charge‐transporting characteristics of new crystalline–crystalline diblock copolymers, poly(3‐hexylthiophene‐block‐stearyl acrylate) (P3HT‐b‐PSA). Three different diblock copolymers, P1 , P2 , and P3 , with P3HT/PSA polymerization degree block ratios of 60/26, 60/50, and 60/360, respectively, were prepared for investigating the morphology‐property relationship and the dependence of optoelectronic properties on the block copolymer structure. Small‐ and wide‐angle X‐ray scattering indicated the presence of both P3HT and PSA crystalline domains and the presence of microphase separation among blocks. The transmission electron microscopy and atomic force microscopy results revealed that the diblock copolymers cast from chlorobenzene, tended to form needle‐like morphologies. The field‐effect mobilities of the diblock copolymers deposited on untreated SiO2 substrates, decreased with increasing PSA block length. In a sharp contrast, the mobilities enhanced with increasing PSA content when the P3HT‐b‐PSA was deposited on phenyltrichlorosilane (PTS)‐treated substrates. The copolymers with a 60/360 P3HT/PSA ratio showed a good mobility of 4 × 10?3 cm2 V?1 s?1 and a high on/off ratio of 7 × 106 on PTS‐treated substrates. This study highlighted the importance of the block ratio, the substrate and self‐assembly structures on the charge transport characteristics of the crystalline–crystalline conjugated diblock copolymers. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

7.
We report the synthesis, characterization, and solvent‐induced structure formation in thin films of an amphiphilic rod‐coil conjugated block copolymer, poly(3‐hexylthiophene)‐b‐poly(ethylene oxide). The diblock copolymers were prepared by a facile click reaction and their characterizations as well as thermal, crystalline, optical properties, and self‐assembly behavior have been investigated in detail. A series of morphologies including two‐phase separated nanostructure, nanofibrils, and their mixed morphology could be obtained depending on the selectivity of solvents to different blocks. Structural analyses demonstrate there is a subtle balance between microphase separation of copolymer and the π‐π stacking of the conjugated P3HT and such balance can be controlled by changing the solvents of different selectivity in solution and the length of P3HT block. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

8.
We report the synthesis and characterization of a series of novel diblock copolymers, poly(cholesteryl methacrylate‐b‐2‐hydroxyethyl methacrylate) (PCMA‐b‐PHEMA). Monomers, cholesteryl methacrylate (CMA) and 2‐(trimethylsiloxy)ethyl methacrylate (HEMA‐TMS), were prepared from methyacryloyl chloride and 2‐hydroxyethyl methacrylate, respectively. Homopolymers of CMA, PCMA, with well‐defined molecular weights and polydispersity indices (PDI), were prepared by reversible addition fragmentation and chain transfer (RAFT) method. Precursor diblock copolymers, PCMA‐b‐P(HEMA‐TMS), were synthesized using PCMA as macromolecular chain transfer agent and monomer, HEMA‐TMS. Product diblock copolymers, PCMA‐b‐PHEMA, were prepared by deprotecting trimethylsilyl units in the precursor diblock copolymers using acid catalysts. Detailed molecular characterization of the precursor diblock copolymers, PCMA‐b‐P(HEMA‐TMS), and the product diblock copolymers, PCMA‐b‐PHEMA, confirmed the composition and structure of these polymers. This versatile synthetic strategy can be used to prepare new amphiphilic block copolymers with cholesterol in one block and hydrogen‐bonding moieties in the second block. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 6801–6809, 2008  相似文献   

9.
A novel six‐arm star block copolymer comprising polystyrene (PS) linked to the center and π‐conjugated poly (3‐hexylthiophene) (P3HT) was successfully synthesized using a combination of atom transfer radical polymerization (ATRP) and click reaction. First, star‐shaped PS with six arms was prepared via ATRP of styrene with the discotic six‐functional initiator, 2,3,6,7,10,11‐hexakis(2‐bromoisobutyryloxy)triphenylene. Next, the terminal bromides of the star‐shaped PS were substituted with azide groups. Afterward, the six‐arm star block copolymer PS‐b‐P3HT was prepared using the click coupling reaction of azide‐terminated star‐shaped PS with alkynyl‐terminated P3HT. Various techniques including 1H NMR, Fourier‐transform infrared and size‐exclusion chromatography were applied to characterize the chemical structures of the intermediates and the target block copolymers. Their thermal behaviors and optical properties were investigated using differential scanning calorimetry and UV–vis spectroscopy. Moreover, atomic force microscopy (AFM) was utilized to observe the morphology of the star block copolymer films. In comparison with two linear diblock copolymer counterparts, AFM results reveal the effect of the star block copolymer architecture on the microphase separation‐induced morphology in thin films. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

10.
The light‐responsive behavior in solution and in thin films of block copolymers bearing 2‐nitrobenzyl photocleavable esters as side groups is discussed in this article. The polymers were synthesized by grafting 2‐nitrobenzyl moieties onto poly(acrylic acid)‐block‐polystyrene (PAA‐b‐PS) precursor polymers, leading to poly(2‐nitrobenzyl acrylate‐random‐acrylic acid)‐block‐polystyrene (P(NBA‐r‐AA)‐b‐PS) block copolymers. The UV irradiation of the block copolymers in a selective solvent for PS led to the formation of micelles that were used to trap hydrophilic molecules inside their core (light‐induced encapsulation). In addition, thin films consisting of light‐responsive P(NBA‐r‐AA) cylinders surrounded by a PS matrix were achieved by the self‐assembly of P(NBA‐r‐AA)‐b‐PS copolymers onto silicon substrates. Exposing these films to UV irradiation generates nanostructured materials containing carboxylic acids inside the cylindrical nanodomains. The availability of these chemical functions was demonstrated by reacting them with a functional fluorescent dye. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

11.
Conjugated block copolymers consisting of poly(3‐hexyl thiophene) (P3HT) and a thermoresponsive polymer poly(N‐isopropyl acrylamide) (PNIPAM) with varying composition have been synthesized by facile click reaction between alkyne terminated P3HT and azide terminated PNIPAM. The composition‐dependent solubility, thermoresponsive property in water, phase behavior, electrochemical, optical, and electronic properties of the block copolymers were systematically investigated. The block copolymers with higher volume fraction of PNIPAM form thermoresponsive spherical micelles with P3HT‐rich crystalline cores and PNIPAM coronas. Both X‐ray and atomic force microscopic studies indicated that the blocks copolymers showed well‐defined microphase separated nanostructures and the structure depended on the composition of the blocks. The electrochemical study of the block copolymers clearly demonstrated that the extent of charge transport through the block copolymer thin film was similar to P3HT homopolymer without any significant change in the band gap. The block copolymers showed improved or similar charge carrier mobility compared with the pure P3HT depending on the composition of the block copolymer. These P3HT‐b‐PNIPAM copolymers were interesting for fabrication of optoelectronic devices capable of thermal and moisture sensing as well as for studying the thermoresponsive colloidal structures of semiconductor amphiphilic systems. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 1785–1794  相似文献   

12.
Novel rod–coil–rod ABA triblock copolymers, poly(3‐hexylthiophene)‐block‐poly(ethylene)‐block‐poly(3‐hexylthiophene) (P3HT‐b‐PE‐b‐P3HT) were synthesized by using a combination of a Ru‐catalyzed ring‐opening metathesis polymerization of 1,4‐cyclooctadiene in the presence of a suitable chain transfer agent (CTA) and a Ni‐catalyzed Grignard metathesis polymerization of 5‐chloromagnesio‐2‐bromo‐3‐hexylthiophene followed by hydrogenation. Using this methodology, the molecular weights of the poly(butadiene) (PBD) or the P3HT blocks were controlled by adjusting the initial monomer/CTA or the initial monomer/macroinitiator ratio, respectively. In addition, the triblock structure was confirmed by selective oxidative degradation of the PBD block found in the intermediate P3HT‐b‐PBD‐b‐P3HT copolymer produced in the aforementioned method, followed by analysis of the degradation products. Thermal analysis and atomic force microscopy of P3HT‐b‐PE‐b‐P3HT revealed that the material underwent phase separation in the solid state, a feature which may prove useful for improving charge mobilities within electronic devices. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 3810–3817  相似文献   

13.
Poly(3‐hexylthiophene)‐b‐poly(3‐pentenylthiophene) and poly(3‐hexylthiophene)‐b‐poly(3‐undecenylthiophene) diblock copolymers have been synthesized by McCullough method. X‐ray diffraction analysis of the diblock copolymers displayed all the reflection peaks specific to regioregular poly(3‐hexylthiophene), indicating that the presence of poly(3‐alkenylthiophene) block does not affect the packing of the polymer in the solid state. The synthesized diblock copolymers were subjected to hydroboration/oxidation and hydrosilation to demonstrate the reactivity of the alkenyl substituents. Furthermore, poly(3‐hexylthiophene)‐b‐poly(3‐pentenylthiophene) was used as a chain transfer agent for the ruthenium‐catalyzed ring‐opening metathesis polymerization of cyclooctene to generate a polycyclooctene graft copolymer, which was hydrogenated to give poly(3‐hexylthiophene)‐b‐poly(3‐pentenylthiophene‐g‐polyethylene). The opto‐electronic properties and the morphology of the synthesized polymers have been investigated. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

14.
In this article, the synthesis of a series of conjugated rod–rod block copolymers based on poly(3‐hexylthiophene) (P3HT) and poly(phenyl isocyanide) (PPI) building blocks in a single pot is presented. Ni‐catalyzed Grignard metathesis polymerization of 2,5‐dibromo‐3‐hexylthiophene and subsequent addition of 4‐isocyanobenzoyl‐2‐aminoisobutyric acid decyl ester in the presence of Ni(dppp)Cl2 as a single catalyst afford P3HT‐b‐PPI with tunable molecular weights and compositions. In solid state, microphase separation occurred as differential scanning calorimetric analysis of P3HT‐b‐PPI revealed two glass transition temperatures. In solutions, the copolymers can self‐assemble into spherical aggregates with P3HT core and PPI shell in tetrahydrofuran and exhibit amorphous state in CHCl3. However, atomic force microscopy revealed that the block copolymers self‐assemble into nanofibrils on the substrate. These unique features warrant the resultant conjugated rod–rod copolymers' potential study in organic photovoltaic and other electronic devices. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 2939–2947  相似文献   

15.
We report the synthesis, characterization, microphase separation, field‐effect charge transport, and photovoltaic properties of regioregular poly(3‐hexylthiophene)‐b‐poly(3‐cyclohexylthiophene) (P3HT‐b‐P3cHT). Two compositions of P3HT‐b‐P3cHT (HcH63 and HcH77) were synthesized with weight‐average molecular weights of 155,500 and 210,800 and polydispersity indices of 1.45 and 1.57, respectively. Solvent‐casted HcH77 was found to self‐assemble into nanowires with a width of 12.5 ± 0.9 nm and aspect ratios of 50–120, as observed by TEM imaging. HcH77 and HcH63 annealed 280 °C were observed by small angle X‐ray scattering (SAXS) and wide angle X‐ray scattering (WAXS) to be microphase‐separated with characteristic length scales of 17.0–21.7 nm. The microphase‐separated domains were shown to be crystalline with interlayer backbone (100) d‐spacings of 1.69 and 1.40 nm, which correspond to the P3HT and P3cHT blocks, respectively. Field‐effect transistors fabricated from P3HT‐b‐P3cHT thin films showed a mobility of holes (0.0019 cm2/Vs) which is independent of thermal annealing. Bulk heterojunction solar cells based on HcH77/fullerene (PC71BM) blend thin films had a maximum power conversion efficiency of 2.45% under 100 mW/cm2 AM1.5 solar illumination in air. These results demonstrate that all‐conjugated block copolymers are suitable semiconductors for applications in field‐effect transistors and bulk heterojunction solar cells. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 614–626, 2010  相似文献   

16.
We investigated the morphological transitions induced by alkyne/azide Huisgen 1,3‐dipolar cycloaddition reaction in a series of poly(ethylene oxide)‐block‐poly(n‐butyl methacrylate‐random‐propargyl methacrylate) (PEO‐b‐P(nBMA‐r‐PgMA)) diblock copolymers. Studies on the phase behavior of neat diblock copolymers revealed that the interactions between the PEO block and the terminal alkyne groups in the P(nBMA‐r‐PgMA) block significantly affected the miscibility between the two blocks and the crystallization of the PEO block. Phase‐mixed diblock copolymers underwent disorder‐to‐order transitions by blending with Rhodamine B azide and annealing at elevated temperatures. Different morphologies were achieved, not only by controlling the composition of the block copolymer but also by blending the diblock copolymer with different amount of azides. Microphase separated PEO‐b‐P(nBMA‐r‐PgMA) diblock copolymer also exhibited reactivity toward azides, and order‐to‐order transitions were observed. © 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2011  相似文献   

17.
New all‐conjugated block copolythiophene, poly(3‐hexylthiophene)‐block‐poly(3‐(4′‐(3″,7″‐dimethyloctyloxy)‐3′‐pyridinyl)thiophene) (P3HT‐b‐P3PyT) was successfully prepared by Grignard metathesis polymerization. The supramolecular interaction between [6,6]‐phenyl‐C61‐butyric acid methyl ester (PCBM) and P3PyT was proposed to control the aggregated size of PCBM and long‐term thermal stability of the photovoltaic cell, as evidenced by differential scanning calorimetry (DSC), transmission electron microscopy (TEM), and optical microscopy. The effect of different solvents on the electronic and optoelectronic properties was studied, including chloroform (CL), dichlorobenzene (DCB), and mixed solvent of CL/DCB. The optimized bulk heterojunction solar cell devices using the P3HT‐b‐P3PyT/PCBM blend showed a power conversion efficiency of 2.12%, comparable to that of P3HT/PCBM device despite the fact that former had a lower crystallinity or absorption coefficient. Furthermore, P3HT‐b‐P3PyT could be also used as a surfactant to enhance the long‐term thermal stability of P3HT/PCBM‐based solar cells by limiting the aggregated size of PCBM. This study represents a new supramolecular approach to design all‐conjugated block copolymers for high‐performance photovoltaic devices. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011.  相似文献   

18.
In this work, the synthesis and characterization of novel amphiphilic diblock copolymers of poly(2‐dimethylamino ethyl methacrylate)‐b‐poly(lauryl methacrylate), PDMAEMA‐b‐PLMA, using the reversible addition‐fragmentation chain transfer (RAFT) polymerization technique, are reported. The diblocks were successfully derivatized to cationic and zwitterionic block polyelectrolytes by quaternization and sulfobetainization of the PDMAEMA block, respectively. Furthermore, their molecular and physicochemical characterization was performed by using characterization techniques such as NMR and FTIR, size exclusion chromatography, light scattering techniques, and transmission electron microscopy. The structure of the diblock micelles, their behavior, and properties in aqueous solution were investigated under the effect of pH, temperature, and ionic strength, as PDMAEMA and its derivatives are stimuli‐responsive polymers and exhibit responses to variations of at least one of these physicochemical parameters. These new families of stimuli‐responsive block copolymers respond to changes of their environment giving interesting nanostructures, behavioral motifs, and properties, rendering them useful as nanocarriers for drug delivery and gene therapy. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 598–610  相似文献   

19.
It is known that poly(3‐alkylthiophene) (P3AT) side‐chain length notably influences the photovoltaic performances of relating devices. However, comprehensively study on its impact on the structures of P3ATs and their blends with [6, 6]‐phenyl‐C61 butyric acid methyl ester (PCBM) is insufficient. By using solid‐state NMR and FTIR techniques, four P3ATs and their PCBM blends are investigated in this work, focusing on the phase structures as modulated by side‐chain length. Recently, we revealed multiple crystalline main‐chain packings of packing a and b together with a mesophase in poly(3‐butylthiophene) (P3BT) films (DOI: 10.1021/acs.macromol.6b01828). Here, the semicrystalline structures are investigated on poly(3‐hexylthiophene) (P3HT), poly(3‐octylthiophene) (P3OT), and poly(3‐dodecylthiophene) (P3DDT) with traditional form I modification, where packing a and the amorphous phase are probed. Furthermore, crystallized side chain within packing a is detected in both P3OT and P3DDT films, which shows a FTIR absorption at 806 cm−1. Structural studies are also conducted on P3AT:PCBM blends. Compared with the pure P3ATs, the polymer crystallinities of the blends show reduction of about 40% for P3OT and P3DDT, whereas only about 10% for P3HT. Moreover, in P3BT:PCBM and P3HT:PCBM, the crystalline polymers and PCBM are phase separated, while in P3OT:PCBM and P3DDT:PCBM, blend components are mostly miscible. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2018 , 56, 751–761  相似文献   

20.
One‐pot methods for the end‐group postpolymerization modification of reversible addition fragmentation chain transfer (RAFT) derived polymers were investigated. Dithioester‐terminated polymers were transformed into ω‐functionalized polymers through conjugate addition of a variety of acrylates with an intermediate thiol. These methods provide a versatile means of introducing a variety of functionalities onto the polymer terminus, while simultaneously removing the residual dithiobenzoate group. A series of functionalized polymethylmethacrylate‐b‐polystyrene (PMMA‐b‐PS) polymers were synthesized utilizing the developed methods to probe the effect of charged end groups on diblock copolymer phase separation in thin films. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 346–356, 2009  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号