首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The systems of open-ended carbon nanotubes (CNTs) immersed in methanol-water solution are studied by molecular dynamics simulations. For the (6,6) CNT, nearly pure methanol is found to preferentially occupy interior space of the CNT. Even when the mass fraction (MF) of methanol in bulk solution is as low as 1%, the methanol MF within the CNT is still more than 90%. For CNTs with larger diameters, the methanol concentrations within CNTs are also much higher than those outside CNTs. The methanol selectivity decreases with increasing CNT diameter, but not monotonically. From microscopic structural analyses, we find that the primary reason for the high selectivity of methanol by CNTs lies on high preference of methanol in the first solvation shell near the inner wall of CNT, which stems from a synergy effect of the van der Waals interaction between CNT and the methyl groups of methanol, together with the hydrogen bonding interaction among the liquid molecules. This synergy effect may be of general significance and extended to other systems, such as ethanol aqueous solution and methanol/ethanol mixture. The selective adsorption of methanol over water in CNTs may find applications in separation of water and methanol, detection of methanol, and preservation of methanol purity in fuel cells.  相似文献   

2.
The structure and stability for the association of water with dimethyl sulfoxide (DMSO) are investigated using the density functional M06‐2X level theory. Stable complexes are formed by the formation of hydrogen bonding between water and oxygen atom of DMSO molecule, while the electrostatic force between water and DMSO plays a vital role in deciding the structure. The water‐DMSO interactions are stronger than the interwater hydrogen bonds, which can be inferred from the shorter DMSO‐water bond distance compared with the water–water bond distance. The calculated solvent association energy does not saturate, and it remains favorable to attach additional water molecules to the existing water network. The calculated IR spectra shifts supports the formation stronger hydrogen bonding, while the electrostatic potential (ESP) plot supports the existence of weaker electrostatic interaction in the studied clusters. The polarizabilities for the ground state clusters were found to increase monotonically with the cluster size. The presence of additional electrostatic bonding between water and DMSO, devastates the linear hydrogen‐bonding network. © 2011 Wiley Periodicals, Inc. Int J Quantum Chem, 2011  相似文献   

3.
The interaction of a carbon nanotube (CNT) with various aromatic molecules, such as aniline, benzophenone, and diphenylamine, was studied using density functional theory able to compute intermolecular weak interactions (B3LYP-D3). CNTs of varying lengths were used, such as 4-CNT, 6-CNT, and 8-CNT (the numbers denoting relative lengths), with the lengths being chosen appropriately to save computation times. All aromatic molecules were found to exhibit strong intermolecular binding energies with the inner surface of the CNT, rather than the outer surface. Hydrogen bonding between two aromatic molecules that include N and O atoms is shown to further stabilize the intermolecular adsorption process. Therefore, when benzophenone and diphenylamine were simultaneously allowed to interact with a CNT, the aromatic molecules were expected to preferably enter the CNT. Furthermore, additional calculations of the intermolecular adsorption energy for aniline adsorbed on a graphene surface showed that the concavity of graphene-like carbon sheet is in proportion to the intermolecular binding energy between the graphene-like carbon sheet and the aromatic molecule.  相似文献   

4.
The interaction of proline with self-assembled monolayers (SAMs) of l-glutathione (gamma-glu-cys-gly) on gold was investigated by a combination of attenuated total reflection (ATR-IR) infrared and modulation excitation spectroscopy (MES). The latter technique makes use of phase-sensitive detection of periodically varying signals and allows discrimination between species with different kinetics such as dissolved proline and adsorbed molecules. By applying a convection-diffusion model coupled to adsorption and desorption, it was possible to extract relative adsorption and desorption rates from the experimental data for the two enantiomers of proline, fully accounting for mass transport within the flow-through cell. The results show that, in particular, the desorption kinetics is different for the two enantiomers. Therefore, the l-glutathione SAM can discriminate between enantiomers, d-proline being stronger bound. The IR spectra reveal that upon interaction with proline the adsorbed l-glutathione is protonated at the gly part of the molecule, which, in the absence of proline, is bound to the gold surface as carboxylate. The observed protonation of adsorbed l-glutathione upon interaction with proline goes along with a structural change of the former, which seems to play an important role for enantiodiscrimination.  相似文献   

5.
镧改性提高ZSM-5分子筛水热稳定性   总被引:1,自引:0,他引:1  
基于12T 团簇模型, 利用密度泛函理论(DFT)研究了ZSM-5 分子筛的水解脱铝机理以及镧改性提高ZSM-5分子筛水热稳定性的机理. 对未改性分子筛水解脱铝机理的研究表明, 首先是第一个水分子吸附在分子筛表面的酸性位上, 对分子筛的Al—O键起弱化作用, 使Al—O键伸长; 接着第二个水分子吸附到分子筛表面,分别与第一个水分子和分子筛骨架形成氢键, 进一步弱化与其最邻近的Al—O键, 并引致该键断裂. 同样, 其它的三个Al—O键也被削弱并逐一断裂, 从而发生分子筛水解脱铝现象. 引入的镧物种与分子筛骨架的四个O原子成键, 将铝包埋, 增加了分子筛孔壁厚度, 增大了水分子攻击铝的空间位阻, 抑制了水分子对Al—O键的弱化, 从而延缓Al—O键的断裂, 提高分子筛的水热稳定性. 计算的水分子吸附能和水解能进一步证实镧的引入提高了ZSM-5分子筛的水热稳定性.  相似文献   

6.
《印度化学会志》2023,100(1):100851
Tuberculosis is the most common disease that affects the lungs in humans. The electronic structural and chemical properties of the antituberculosis drug N-Cyclopentylidenepyridine-4-carbohydrazide have already been investigated. The adsorption properties of the antituberculosis drug N-Cyclopentylidenepyridine-4-carbohydrazide (CPPC) with single-wall carbon nanotube CNT(C56H16) are investigated using a combination of DFT/B3LYP method and 6-31G(d,p) basis set in both gaseous and water solvent, and calculated results are compared. By comparing CNT's corresponding optimized bond lengths with CNT@CPPC, the effect of CPPC adsorption on optimized drug delivery system parameters has been discussed. Based on topological parameters, the nonbonding interaction between CNT and CPPC drug is discussed using QTAIM analysis at BCP in both gas and water solvent. The thermodynamical stability of the CPPC@CNT adsorption process is also calculated, showing the adsorption of CPPC with CNT favors in both media. Natural bond analysis (NBO) was used to investigate the IR spectra, and the effect of charge transfer from CPPC to CNT in CNT@CPPC in both media provides information about how polarity changes from gas to water solvent. Because drug delivery action is done in blood plasma, the UV–Vis spectra of CNT are compared to CNT@CPPC in water solvent, providing insight into the adsorption of CPPC drug by CNT. We have compared the chemical shift isotropic (CS1) and chemical shift anisotropic (CSA) of CNT, CPPC, and CNT@CPPC to determine the change in electron density.  相似文献   

7.
The enthalpies of solution of uracil and its alkylated derivatives in water, methanol, N,N-dimethylformamide (DMF) and water+DMF mixtures were measured at 25°C. The enthalpies of solvation were determined. The enthalpies of cavity formation, corresponding to the enthalpies of solvent-solvent interactions were calculated and the enthalpies of solute-solvent interactions were obtained. The presence of the alkyl groups was found to have different effects on the enthalpy of interaction depending on the position and size of the substitution. The effect of alkylation at the nonpolar side of the uracil ring was found to arise mostly from the enhancement of the van der Waals interactions. The alkyl substitutions at the polar side resulted also in the removal of the solvent molecules interacting specifically with the polar groups of uracil. The enthalpy of those specific interactions was determined and found to be stronger in methanol and DMF than in water. Enthalpies of solvation in the binary water+DMF solvent were found to depend in a nonlinear way on the solvent composition. The nonlinearities in the water-rich region were found to arise from the decay of the hydrophobic hydration of the solutes with the increasing DMF content. The substitution of two methyl groups caused the uracil molecule to bahave as a predominantly hydrophobic solute. The nonlinearities in the DMF-rich region were found only for those solutes which can form hydrogen bonds with DMF.  相似文献   

8.
基于原煤和有机溶剂抽余物的等温吸附实验结果,对比分析溶剂极性与其煤抽余物吸附甲烷能力变化关系,探讨抽提溶剂极性差异对煤抽余物吸附甲烷能力控制的地球化学机理。结果表明,煤溶剂抽余物等温吸附甲烷曲线都遵循Langmuir方程,且二硫化碳(CS2)和苯(C6H6)溶剂抽提作用增大了煤吸附甲烷量,四氢呋喃(THF)和丙酮溶剂抽提作用减小了煤吸附甲烷量。实验发现,煤抽余物吸附甲烷能力变化与抽提溶剂极性成负相关关系,该现象可用相似相容原理解释:CS2和C6H6溶剂极性较弱,抽提出较多具有非极性结构(-CH3和-CH2-)的烷烃和芳烃,为甲烷在煤表面吸附增多了吸附位而增强了抽余物吸附甲烷能力,THF和丙酮溶剂极性较强,抽提出较多具有极性结构(-CHO、-OH、和-COOH)的非烃和沥青质,减少了吸附位而降低煤抽余物的甲烷吸附能力。  相似文献   

9.
Four different organosilanes (octyltrihydroxysilane, butyltrihydroxysilane, aminopropyltrihydroxysilane, and thiolpropyltrihydroxysilane) adsorbed at a reconstructed Zn-terminated polar ZnO (0001) surface are studied via constant temperature (298 K) molecular dynamics simulations. Both single adsorbed silane molecules as well as adsorbed silane layers are modeled, and the energy, distance, orientation, and alignment of these adsorbates are analyzed. The adsorbed silane molecules exhibit behavior depending on the chemical nature of their tail (nonpolar or polar) as well as on the silane concentration at the solid surface (single adsorption or silane layer). In contrast to the O-terminated ZnO surface studied previously, now adsorption can only occur at the vacancies of this reconstructed crystal surface, thus leading to an arched structure of the liquid phase near the crystal surface. Nevertheless, both nonpolar and polar single adsorbed silanes show a similar orientation and alignment at the surface (orthogonal in the former, parallel in the latter case) as for the O-terminated ZnO surface, although the interaction energy with the surface is considerably increased for nonpolar silanes while it is nearly unaffected for the polar ones. For adsorbed silanes within silane layers, the difference to single adsorbed silanes depends on the polarity of the tail: nonpolar silanes again show an orthogonal alignment, while polar silanes exhibit two different orientations at the solid surface-a head and a tail down configuration. This leads to two completely different but nevertheless stable orientations of these silanes at the Zn-terminated ZnO surface.  相似文献   

10.
The adsorption of carbon dioxide and methane in nanoporous carbons in the presence of water is studied using experiments and molecular simulations. For all amounts of adsorbed water molecules, the adsorption isotherms for carbon dioxide and methane resemble those obtained for pure fluids. The pore filling mechanism does not seem to be affected by the presence of the water molecules. Moreover, the pressure at which the maximum adsorbed amount of methane or carbon dioxide is reached is nearly insensitive to the loading of preadsorbed water molecules. In contrast, the adsorbed amount of methane or carbon dioxide decreases linearly with the number of guest water molecules. Typical molecular configurations obtained using molecular simulation indicate that the water molecules form isolated clusters within the host porous carbon due to the nonfavorable interaction between carbon dioxide or methane and water.  相似文献   

11.
In this work, we report a dual-control-volume grand canonical molecular dynamics simulation study of the transport of a water and methanol mixture under a fixed concentration gradient through nanotubes of various diameters and surface chemistries. Methanol and water are selected as fluid molecules since water represents a strongly polar molecule while methanol is intermediate between nonpolar and strongly polar molecules. Carboxyl acid (-COOH) groups are anchored onto the inner wall of a carbon nanotube to alter the hydrophobic surface into a hydrophilic one. Results show that the transport of the mixture through hydrophilic tubes is faster than through hydrophobic nanotubes although the diffusion of the mixture is slower inside hydrophilic than hydrophobic pores due to a hydrogen network. Thus, the transport of the liquid mixture through the nanotubes is controlled by the pore entrance effect for which hydrogen bonding plays an important role.  相似文献   

12.
Large molecular clusters can be considered as intermediate states between gas and condensed phases, and information about them can help us understand condensed phases. In this paper, ab initio quantum mechanical methods have been used to examine clusters formed of methanol and water molecules. The main goal was to obtain information about the intermolecular interactions and the structure of methanol/water clusters at the molecular level. The large clusters (CH(4)O...(H(2)O)(12) and H(2)O...(CH(4)O)(10)) containing one molecule of one component (methanol or water) and many (12, 10) molecules of the other component were considered. M?ller-Plesset perturbation theory (MP2) was used in the calculations. Several representative cluster geometries were optimized, and nearest-neighbor interaction energies were calculated for the geometries obtained in the first step. The results of the calculations were compared to the available experimental information regarding the liquid methanol/water mixtures and to the molecular dynamics and Monte Carlo simulations, and good agreement was found. For the CH(4)O...(H(2)O)(12) cluster, it was shown that the molecules of water can be subdivided into two classes: (i) H bonded to the central methanol molecule and (ii) not H bonded to the central methanol molecule. As expected, these two classes exhibited striking energy differences. Although they are located almost the same distance from the carbon atom of the central methanol molecule, they possess very different intermolecular interaction energies with the central molecule. The H bonding constitutes a dominant factor in the hydration of methanol in dilute aqueous solutions. For the H(2)O...(CH(4)O)(10) cluster, it was shown that the central molecule of water has almost three H bonds with the methanol molecules; this result differs from those in the literature that concluded that the average number of H bonds between a central water molecule and methanol molecules in dilute solutions of water in methanol is about two, with the water molecules being incorporated into the chains of methanol. In contrast, the present predictions revealed that the central water molecule is not incorporated into a chain of methanol molecules, but it can be the center of several (2-3) chains of methanol molecules. The molecules of methanol, which are not H bonded to the central water molecule, have characteristics similar to those of the methane molecules around a central water molecule in the H(2)O...(CH(4))(10) cluster. The ab initio quantum mechanical methods employed in this paper have provided detailed information about the H bonds in the clusters investigated. In particular, they provided full information about two types of H bonds between water and methanol molecules (in which the water or the methanol molecule is the proton donor), including information about their energies and lengths. The average numbers of the two types of H bonds in the CH(4)O...(H(2)O)(12) and H(2)O...(CH(4)O)(10) clusters have been calculated. Such information could hardly be obtained with the simulation methods.  相似文献   

13.
In the present research study, we present the development of a model for predicting the adsorption of binary mixtures of nonpolar molecules, as well as polar molecules, based on density functional theory with mean-field approximation in narrow slit-pores. The first system under consideration is comprised of a binary mixture of nonpolar molecules, modeled by considering intermolecular dispersion forces, whereas the second system comprised of a binary mixture of polar molecules is modeled by considering orientation averaged electrostatic interactions, namely dipole-dipole and dipole-induced dipole interactions as well as dispersion interactions. An explicit equation for the Helmholtz free energy of the pore phase binary fluid mixture is derived. The proposed model is used to simulate the selective sorption of ethane from an ethane-methane mixture and water from a methanol-water mixture in the slit-pore. The simulated results are interpreted by studying the relative contributions of fluid-wall and fluid-fluid interactions. Finally, simulation results obtained are compared with the results of existing models and molecular simulations in the literature.  相似文献   

14.
A microstructured ionic crystal, K(3)[Cr(3)O(OOCH)(6)(H(2)O)(3)][alpha-SiW(12)O(40)].16 H(2)O (1) was synthesized by the complexation of the Keggin-type polyoxometalate of [alpha-SiW(12)O(40)](4-) with a macrocation of [Cr(3)O(OOCH)(6)(H(2)O)(3)](+). Compound 1 possessed a straight channel, with an opening of approximately 0.5x0.8 nm, which contained the water of crystallization. The use of the macrocation with large size (0.7 nm) and small charge (+1) reduced the anion-cation interaction and was essential for the channel formation. The molecular structures of the polyoxometalate and the macrocation in 1 were retained under vacuum at 473 K. Analogues of 1 were synthesized with [alpha-PVW(11)O(40)](4-) or [Fe(3)O(OOCH)(6)(H(2)O)(3)](+). The water of crystallization in 1 was removed under vacuum at room temperature to form the closely packed guest-free phase 2. Compound 2 reversibly and repeatedly included water and polar organic molecules with two carbon atoms or less. Guest inclusion was highly selective and a difference of even one methylene group in the organic guest molecule was discriminated by the host. Polar organic molecules with longer methylene chains and nonpolar molecules such as dinitrogen and methane were completely excluded. The guest-inclusion properties could be explained by the ion-dipole interaction between the host and the guest, which is proportional to the dipole moment of the guest molecule and inversely proportional to the ion-dipole (host-guest) distance. Thus, small polar molecules were selectively absorbed. These distinctive guest-inclusion properties were successfully applied to the oxidation of methanol from a mixture of C(1) and C(2) alcohols. These results show unique guest inclusion and catalysis by rationally designed ionic crystals.  相似文献   

15.
The dispersing action of the surfactant (sodium dodecyl sulfate, SDS) on the carbon nanotubes (CNT) in aqueous medium has been studied. Electron microscopy, molecular docking, NMR and IR spectroscopies were applied to determine the physical-chemical properties of CNT dispersions in SDS—water solutions. It was established that micellar adsorption of the surfactant on the surface of carbon material and solubilization of SDS in aqueous medium contribute to improving CNT dispersing in water solutions. It was shown that the non-polar hydrocarbon radicals of a single surfactant molecule form the highest possible number of contacts with the graphene surface. Upon increase of the SDS in solution these radicals form micelles connected with the surface of the nanotubes. At the sufficiently high SDS concentration the nanotube surface becomes covered with an adsorbed layer of surfactant micelles. Water molecules and sodium cations are concentrated in spaces between micelles. The observed pattern of micellar adsorption is somewhat similar to a loose bilayer of surfactant molecules.  相似文献   

16.
王红磊  邹昊  胡勇军 《结构化学》2011,30(11):1656-1671
Microsolvation of glycine in methanol clusters is explored by the use of DFT calculation method. The lowest energy conformations within 16.72 kJ·mol-1 of the glycine clustering with one to six methanol molecules, which are obtained at the B3LYP/6-31+G(d) level of theory, are reoptimized at PBE1PBE/6-311+G(d,p). The calculated results agree with our previous results with B3LYP (Chin. J. Chem. Phys. 22 (2009) 577) that the clusters of two forms (Z-and N-form) tend to be isoenergetic when the number of the solvate molecules reaches six. Furthermore, this result is in good agreement with the experiment of the tryptophan-methanol clusters, implying that the present treatments are reasonable and reliable. The results also indicate that nine methanol molecules are not enough to fully solvate a glycine molecule, and a tentative estimation is obtained that ten methanol molecules may fully solvate a glycine molecule, which consists with the experiment results.  相似文献   

17.
The solvation and aggregate formation of complex amphiphilic molecules such as tetra-acids in polar and nonpolar phases are studied via Molecular Dynamics simulations. The nonpolar core of tetra-acid molecules is found to be effectively impermeable for water molecules resulting in a low solubility in the polar solvent, while nonpolar solvent molecules sufficiently solvate the amphiphilic molecules considered, enabling an open conformation of their molecular structure. The rigidity of the core region of the tetra-acid molecules has been found to play a crucial role in their behavior in both polar and nonpolar phases. In the polar phase, simulations have shown that tetra-acids form micelle-like structures with a small aggregation number, confirming previous experimental work. The identification of a case of study in which micelle-like structures can form only with a small aggregation number enables the study via Molecular Dynamics of micelle-micelle interactions. Micelle stability and dispersion in the polar phase under different conditions can be therefore investigated. In the nonpolar phase, the preferential interactions between carboxyl groups, the affinity of the tetra-acids with the solvent molecules, and the structural characteristics of the central core moiety of the tetra-acids have been found to possibly induce a web like array, or network.  相似文献   

18.
For Zn2+ cations in ZnZSM-5 zeolite unusual type of cationic positions, formed by two distantly placed framework aluminium atoms, is considered. Some extent of structural destabilization of cations in these cationic positions in comparison with traditional localization should result in promoted Lewis activity and adsorption activity of these sites. The last ones are manifested in the significantly increased IR low frequency shifts for adsorbed molecules and in their ability for heterolytic dissociation at elevating temperature. DFT cluster quantum chemical modeling of light alkane adsorption on Zn2+ in ZnZSM-5 zeolites confirms these conjectures in full agreement with recent experiments. Similar to the previously considered dihydrogen and methane molecule adsorption, we present here the calculations of ethane molecular and dissociative adsorption on these sites. It is shown that the unusually large ethane IR frequency shift recently observed in ZnZSM-5 zeolite can result from adsorptive interaction of C2H6 with Zn2+ stabilized in a cationic position with distantly placed aluminium ions. The dissociative adsorption of ethane molecules with the formation of bridged hydroxyl group and Zn–C2H5 structure is considered and an activation energy of ethylene formation from the alkyl fragment is evaluated.  相似文献   

19.
The surface reactions of dimethyl ether (DME) on industrial alumina (γ-Al2O3) were studied by chromatographic analysis of the products at the outlet of the flow reactor and (independently) by diffuse reflectance IR spectroscopy. The major products of the reactions at 250°С were found to be methanol formed in the reaction of DME with hydroxyl groups (the 3720 and 3674 cm–1 bands in the diffuse reflectance spectrum) and various methoxy groups (the 1121, 1070, 695, and 670 cm–1 bands in the differential spectra). The presence of molecularly adsorbed methanol was confirmed by experiments with methanol fed in a high-temperature IR cell. The interaction of the resulting methanol molecule with the hydroxyl group led to the formation of a water molecule in the gas phase and a methoxy group on the oxide surface. Strong adsorption of molecular DME was revealed, which was favored by an increase in the temperature of the preliminary calcination of oxide from 250 to 450–500°С; treatment of alumina with water vapor after its preliminary contact with DME led to a recovery of the hydroxyl coating and a replacement of molecularly adsorbed DME with hydroxyl. The thermal effect recorded in a flow reactor was positive during the adsorption of DME and negative during the desorption of weakly bonded DME. Schemes of formation of methoxy groups in the interaction of DME and methanol with surface hydroxyls were suggested.  相似文献   

20.
The macrocyclic bisphosphonate 2 forms complexes with amino alcohols, amines, and amino acid esters with high association constants in polar organic solvents. Exertion of solvophobic interactions inside the macrocyclic cavity in DMSO and methanol leads to specificity for guest molecules with hydrophobic moieties. Experimental evidence is presented for the insertion of the guest molecules' nonpolar groups into the macrocycle's hydrophobic cavity. NMR spectra of complexes with 2 in DMSO show a molecular imprint of the guest molecule; this gives information about its location inside the macrocycle. In aqueous solutions strong self-association of 2 occurs, which is explained by distinct structural similarities between 2 and micelle-forming phospholipids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号