首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
New water‐soluble hyperbranched polyfluorenes bearing carboxylate side chains have been synthesized by the simple “A2 + B2 + C3” protocol based on Suzuki coupling polymerization. The linear polyfluorene analogue LPFA was also synthesized for comparative investigation. The optical properties of the neutral precursory polymers in CHCl3 and final carboxylic‐anionic conjugated polyelectrolytes in buffer solution were investigated. The obtained hyperbranched polyelectrolyte HPFA2 with lower content of branch unit (2%) showed excellent solubility and high fluorescence quantum yield (?F = 89%) in aqueous solution. Fluorescence quenching of HPFA2 by different metal ions was also investigated, the polyelectrolyte showed high selectivity for Hg2+ and Cu2+ ions relative to other various metal ions in buffer solution. The Stern‐Volmer constant Ksv was determined to be 0.80 × 106 M?1 for Hg2+ and 3.11 × 106 M?1 for Cu2+, respectively, indicating the potential application of HPFA2 as a highly selective and sensitive chemosensor for Hg2+ and Cu2+ ions in aqueous solution. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 3431–3439, 2010  相似文献   

2.
A poly(phenylacetylene) bearing a polycarbohydrate ionophore as a graft chain (copolymer 4 ) was synthesized by the copolymerization of end‐functionalized (1→6)‐2,5‐anhydro‐3,4‐di‐O‐ethyl‐D ‐glucitol with a 4‐ethynylbenzoyl group (macromonomer 2 ) with phenylacetylene. Copolymer 4 showed a split‐type circular dichroism (CD) in the long absorption region of the conjugated polymer backbone (280–500 nm), and the CD pattern varied in response to external stimuli, such as the solvents and temperature. This suggested that 4 had a predominantly one‐handed helical conformation in the polyacetylene backbone. The CD pattern of 4 was completely inverted by the formation of a complex between the macromolecular ionophore units and the selected metal cations, that is, Ba2+, Pb2+, Sr2+, Na+, and Li+. This suggested that copolymer 4 underwent a helix–helix transition through the host–guest complexation with achiral inorganic metal cations. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 5855–5863, 2005  相似文献   

3.
The influence of attaching hydrophobic side groups to a polyelectrolyte, used for deposition of a multilayer oxygen gas barrier thin film, was investigated. Polyethyleneimine (PEI) was labeled with pyrene and deposited in “quadlayers” of PEI, poly(acrylic acid), PEI, and sodium montmorillonite clay using layer‐by‐layer assembly. Thin films made of three repeating quadlayers using unmodified PEI had much lower density (1.24 g/cm3) than pyrene‐labeled PEI‐based films (1.45 g/cm3), which is believed to be the result of greater chain coiling from the increased hydrophobicity of pendant pyrene groups. This increased density in pyrene‐labeled PEI layers allowed three quadlayers to match the oxygen transmission rate of a four quadlayer film made with unmodified PEI. This discovery provides an additional tool for tailoring the barrier behavior of clay‐based multilayer thin films that could prove useful for a variety of packaging applications. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2014 , 52, 1153–1156  相似文献   

4.
Small‐angle X‐ray scattering (SAXS) was used to obtain solution parameters of a weak polyelectrolyte in water in the absence of any additives, such as neutralizing agents or salt. Poly(acrylic acid) (PAA) was used as a weak polyelectrolyte from which SAXS data were obtained in the dilute region of 1–10 mg cm?3. An intrinsic viscosity of 15.7 dL g?1 was obtained from a plot of reciprocal reduced viscosities versus the concentration. The application of the SAXS data, that is, the contour length (L = 1.97 × 104 Å), the persistence length (a* = 58.5 Å), and the molecular weight (M = 5.9 × 105 Da), to the Yamakawa–Fujii equation suggested that PAA in water at 25 °C could be described as a wormlike chain having a cylindrical body of d = 6 Å. An end‐to‐end distance (r = 1.6 × 103 Å) was calculated from r = 2a*L ? 2(a*)2. The nonisotropic expansion factor (α = 2.9) was calculated for PAA expanding from the random coil in dioxane at 30 °C (Θ temperature) to the wormlike chain in water at 25 °C. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 1263–1272, 2003  相似文献   

5.
A main‐chain, azoaromatic, chromophore‐functionalized polyelectrolyte with an oligomeric molecular weight was synthesized by the reaction of 4,4′‐azobispyridine and 1,6‐dibromohexane. The polyelectrolyte was designed to contain ionic groups to impart electrostatic self‐assembly with polyanion and azoaromatic groups for photoprocessability. The polymer solution exhibited a solvatochromic effect, having different absorption maxima in water (294 nm) and N,N‐dimethylformamide (400 nm). By a change in the counteranions of the bispyridinium groups, the solubility of the polymer could be controlled, and this made it possible to fabricate electrostatic assembled films or spin‐cast films for further applications. The direct photofabrication of laser‐induced interference patterns on polymer surfaces with large surface modulation was also investigated with an argon ion laser. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 1196–1201, 2003  相似文献   

6.
Three chiral polymers P‐1 , P‐2 , and P‐3 could be obtained by the polymerization of (R)‐6,6′‐dibutyl‐3,3′‐diiodo‐2, 2′‐binaphthol (R‐M‐1) , (R)‐6,6′‐dibutyl‐3,3′‐diiodo‐2,2′‐bisoctoxy‐1,1′‐binaphthyl ( R‐M‐2 ), and (R)‐6,6′‐dibutyl‐3,3′‐diiodo‐2,2′‐bis (diethylaminoethoxy)‐1,1′‐binaphthyl ( R‐M‐3 ) with 4,7‐diethynyl‐benzo[2,1,3]‐thiadiazole ( M‐1) via Pd‐catalyzed Sonogashira reaction, respectively. P‐1 , P‐2 , and P‐3 can show pale red, blue–green, and orange fluorescence. The responsive optical properties of these polymers on various metal ions were investigated by fluorescence spectra. Compared with other cations, such as Co2+, Ni2+, Ag+, Cd2+, Cu2+, and Zn2+, Hg2+ can exhibit the most pronounced fluorescence response of these polymers. P‐1 and P‐2 show obvious fluorescence quenching effect upon addition of Hg2+, on the contrary, P‐3 shows fluorescence enhancement. Three polymer‐based fluorescent sensors also show excellent fluorescence response for Hg2+ detection without interference from other metal ions. The results indicate that these kinds of tunable chiral polybinaphthyls can be used as fluorescence sensors for Hg2+ detection. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 997–1006, 2010  相似文献   

7.
Small‐angle X‐ray scattering was used to investigate the nanostructures of complexes formed by slightly crosslinked anionic copolymer gels of poly(sodium methacrylate‐coN‐isopropylacrylamide) [P(MAA/NIPAM)] with cetyltrimethylammonium bromide (CTAB), and didodecyldimethylammonium bromide (DDAB), respectively, at room temperature (∼ 23°C). Several highly ordered supramolecular structures were observed in the polyelectrolyte gel–surfactant complexes. In P(MAA/NIPAM)–CTA systems, in sequence with decreasing charge density of the P(MAA/NIPAM) copolymer chains, structures of the Pm3n space group cubic, face‐centered cubic close packing of spheres, and hexagonal close packing of spheres were determined at a charge content of ≥ 75, 67, and 50%, respectively. The spheres and rods in these structures were the spherical and cylindrical micelles formed by the self‐assembly of CTA cations with their paraffin chains inside. Both the aggregation number and the size of the micelles decreased with a decreasing charge density of the copolymer chains. In the P(MAA/NIPAM)–DDA systems, the bilayer lamellar structures formed at charge contents ≥ 75% transferred to bicontinuous cubic structures of the Ia3d space group at charge contents of 50–67%. The rods in the Ia3d cubic structures were formed by the self‐assembly of double‐tailed DDA cations with polar moieties inside. The formation of these highly ordered structures were driven by both electrostatic and hydrophobic interactions of the charged copolymer chains/surfactants and the surfactants/surfactants inside the charged gels. The structures became less ordered by further decreasing the charge content of the P(MAA/NIPAM) chains. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 2165–2172, 1999  相似文献   

8.
Two well‐defined triphenylamine‐based fluorescent conjugated copolymers with pendant terpyridyl ligands were synthesized through Suzuki coupling polymerization and were further characterized by 1H‐NMR, 13C‐NMR, gel permeation chromatography, Infrared, and UV‐vis spectra. Polymer P‐1 , terpyridine‐bearing poly(triphenylamine‐alt‐fluorene) with a high fluorescence quantum yield (62%) shows much higher sensitivities toward Fe3+, Ni2+, and Cu2+ as compared with the other metal ions investigated. Especially, Fe3+ can lead to an almost complete fluorescence quenching of polymer P‐1 . Whereas, the analogous polymer P‐2 , in which N‐ethylcarbazole repeat units replace the fluorene units in P‐1 , shows a very poor selectivity. It demonstrates that polymers with a same receptor may show different sensitivity to analytes owing to their different type of backbones. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 1310–1316, 2010  相似文献   

9.
Electrolytic conductivity behavior of some cationic polysaccharides in water, methanol, and the mixtures water/methanol is presented. The polyelectrolytes investigated contain quaternary ammonium salt groups, N‐alkyl‐N,N‐dimethyl‐2‐hydroxypropyleneammonium chloride, attached to a dextran backbone. This study considers the influences of polymer concentration (1 × 10?6 < C < 1 × 10?2 monomol L?1) and the charge density (ξ = 0.48–3.17) modified either by changing charge distance (b) or dielectric constant of the solvent (ε) on polyion–counterion interaction in salt‐free solutions. Above the critical value, ξc = 1, the variation of the equivalent conductivity (Λ) as a function of concentration is typical for a polyelectrolyte behavior. The conductometric data in water were analyzed in terms of the Manning's counterion condensation theory. The presence of longer alkyl chains at quaternary N atoms was found to have a negligible influence on the Λ values. The results show that the decrease of the medium polarity results in the decrease of the number of free ions and, consequently, of the equivalent conductivity values. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 3584–3590, 2005  相似文献   

10.
A new oligomeric calix[4]arene‐thiacrown‐4 ( 5 ) was synthesized via a condensation reaction of 5,11,17,23‐tetra‐tert‐butyl‐25,27‐bis‐(4‐aminobenzyloxy)‐calix[4]arene‐thiacrown‐4 ( 4 ) with adipoyl dichloride. In this oligomerization reaction only five/six calix[4]arene‐thiacrown‐4 units were linked in the oligomeric chain. The complexation studies of 5 were made with liquid–liquid‐ extraction and solid–liquid‐sorption procedures. For comparison, the extraction efficiencies of monomers 1 , 3 , and 4 to selected transition metals are reported. The selectivity of monomers 3 and 4 toward Cu2+, Hg2+, and Pb2+ was lost after oligomerization in the two‐phase extraction systems. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 186–193, 2004  相似文献   

11.
Histidine functional block copolymers are thermally self‐assembled into polymer micelles with poly‐N‐isopropylacrylamide in the core and the histidine functionality in the corona. The thermally induced self‐assemblies are reversible until treated with Cu2+ ions at 50 °C. Upon treatment with 0.5 equivalents of Cu2+ relative to the histidine moieties, metal‐ion coordination locks the self‐assemblies. The self‐assembly behavior of histidine functional block copolymers is explored at different values of pH using DLS and 1H NMR. Metal‐ion coordination locking of the histidine functional micelles is also explored at different pH values, with stable micelles forming at pH 9, observed by DLS and imaged by atomic force microscopy. The thermal self‐assembly of glycine functional block copolymers at pH 5, 7, and 9 is similar to the histidine functional materials; however, the self‐assemblies do not become stable after the addition of Cu2+, indicating that the imidazole plays a crucial role in metal‐ion coordination that locks the micelles. The reversibility of the histidine‐copper complex locking mechanism is demonstrated by the addition of acid to protonate the imidazole and destabilize the polymer self‐assemblies. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019, 57, 1964–1973  相似文献   

12.
Phosphonium‐containing polyelectrolyte networks (PENs) ( P1 – P4 ) were prepared by cyclotrimerization of bis(4‐acetylphenyl)diphenylphosphonium bromide ( M1 ) and 1,4‐diacetylbenzene ( M2 ) with p‐toluene sulfonic acid in various M1:M2 ratios (1,0, 1:1, 1:2, and 1:4). The relative abundance of the PAr4+ units in each PEN was demonstrated to influence thermal stability, alkaline stability, water uptake, surface area, and CO2 uptake in predictable ways. Impressively, PENs with NTf2? counterions (Tf = CF3SO3) did not exhibit 5% mass loss until heating above 400 °C. Alkaline stability, tested by challenging a PEN with 6 M NaOH(aq) at 65 °C for 120 h, increased with increasing PAr4+ content, which reflected the enhanced reactivity of the HO? anion in more hydrophobic materials (i.e., PENs with lower M1:M2 ratios). The specific surface areas estimated by Brunauer‐Emmett‐Teller (BET) analysis for these PENs were above 60 m2/g under N2 and nearly 90 m2/g under CO2. Notably, P3 (in which 33% of monomers comprise a phosphonium moiety) exhibited a CO2 uptake affinity of one CO2 molecule adsorbed for every phosphonium site. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 598–604  相似文献   

13.
The first anion with four polymerizable groups has been synthesized and used to produce durable, crosslinked polyelectrolyte (PE) coatings in a single step. Sodium tetrakis(4‐vinylphenyl)borate (NaBSty4) was produced by the reaction of BCl3 and the Grignard of 4‐bromostyrene. The full series of borates NaBPhxSty4?x, x = 1?3, were also synthesized analogously by reaction of the styryl‐Grignard and PhBCl2, Ph2BCl, or Ph3B. Anion exchange of the borates with tributyl 4‐vinylbenzylphosphonium chloride gave a family of organic salts developed for applications in photopolymerized coatings. The percent UV cure of the polymer films was determined by infrared spectroscopy and this relative level of curing was corroborated by differential scanning calorimetry analysis. The degree of crosslinking imparted to the polymer films by the different monomers has resulted in varied mechanical properties, which were probed by diamond tip scratch tests and nanoindentation. These clearly demonstrated that as the number of polymerizable groups increased, the film hardness increased correspondingly. The final hardness of the films exceeds those of other related systems and identifies styryl borates as viable crosslinking additives in UV curable technologies, especially in the production of durable PE films. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

14.
With nucleophilic aromatic substitution and ester condensation reactions, several new first‐generation dendrimers and star‐shaped molecules containing cationic cyclopentadienyl iron moieties were prepared. Although the solubility of the organoiron star‐shaped molecules with ether bridges in polar solvents was found to decrease with an increase in the size of the molecule, the addition of ester linkages resulted in a sharp decrease in the solubility, regardless of the size. The thermal behavior of these molecules was examined with differential scanning calorimetry and thermogravimetric analysis. The glass‐transition temperatures (Tg's) of these star‐shaped molecules ranged from 123 to 170 °C. However, the addition of the ester functionality allowed for an increase in the Tg's to 151–194 °C. The star‐shaped molecules were thermally stable up to 200 °C, above which a loss of the cationic cyclopentadienyl iron moieties occurred. Degradation of the ester chains started at 321 °C, and degradation of the ether chains started at 408 °C. Electrochemical studies of the ether star‐shaped molecules showed a reduction of the 18‐electron iron centers to 19‐electron centers. This redox system was reversible at low temperatures, whereas it was irreversible at room temperature. Moreover, an increase in the number of metal moieties caused an overlap and broadening of the redox wave. Viscosity studies showed a polyelectrolyte effect for the organoiron star‐shaped molecules. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 1382–1396, 2005  相似文献   

15.
Two comb‐like copolymers (BIMT and PMB) composed of N‐2‐thiazolylmethacrylamide (NTMA) and 2‐(1‐butylimidazolium‐3‐yl) ethyl methacrylate tetrafluoroborate (BIMA) were prepared by free radical polymerization and reversible addition‐fragmentation chain transfer (RAFT) polymerization. The conversion of the monomers to copolymer has been confirmed by FTIR spectra and 1H NMR spectra. The metal (Ni2+, Nd3+) complexes of these two copolymers were prepared, and the magnetic behaviors of the complexes were studied. The coordinated complexes display three possible chelating structures, which lie on the nitrogen donor and oxygen donor ligands and the kinds of the metal ions. The bimetallic complexes (BIMT‐Nd‐Ni and PMB‐Nd‐Ni) were synthesized by using the different coordination sites of the polymers. The magnetic properties of the complexes show that different structures arising from the different preparations, the kinds and the contents of metal ions, and the state of the complexes can infect the exchange interaction between the metal ions and induce various magnetic phenomena. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 5123–5132, 2008  相似文献   

16.
A functionalized cyclam was synthesized by the attachment of a polymerizable acryloyl group to one of the four nitrogens on the cyclam molecule. The polymerization of the functionalized cyclam was performed with N‐isopropylacrylamide and N,N′‐methylene bisacrylamide, and the gels obtained were studied in the presence of different transition‐metal‐ion solutions. There was a drastic difference in the phase‐transition temperature (Tc) of the poly(N‐isopropylacrylamide) (PNIPAAm)/cyclam gel in comparison with the pure PNIPAAm gel. For the described system, a Tc shift of 15 °C was obtained. The presence of functionalized cyclam increased the hydrophilicity and Tc of the aforementioned polymer gels in deionized water (at pH 6) because of the presence of protonated amino moieties. The PNIPAAm/cyclam gels showed a dependence of the swelling behavior on pH. Tc of the pure PNIPAAm gel was weakly influenced by the presence of any transition‐metal ions, such as Cu2+, Ni2+, Zn2+, and Mn2+. The addition of Cu2+ or Ni2+ to the PNIPAAm/cyclam gel reduced Tc of the polymer gel, and a shift of approximately 12 °C was observed. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 1594–1602, 2003  相似文献   

17.
A new poly(p‐phenylene ethynylene) derivative with pendant 2,2′‐bipyridyl groups and glycol units (PPE‐bipy) has been prepared, and its metal ion sensing properties were investigated. The polymer of PPE‐bipy exhibited high selectivity for Hg2+ as compared with Li+, Na+, K+, Ba2+, Ca2+, Mg2+, Al3+, Mn2+, Ag+, Zn2+, Pb2+, Ni2+, Cd2+, Cu2+, Co,2+ and Fe3+ in THF/EtOH (1:1, v/v) solution. The fluorescence of PPE‐bipy was efficiently quenched by Hg2+ ions, and the detection limit was found to be 8.0 nM in a THF/EtOH (1:1, v/v) solvent system. PPE‐bipy also showed a selective chromogenic behavior toward Hg2+ ions by changing the color of the solution from slight yellow to colorless, which can be detected with the naked eye. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 1998–2007, 2008  相似文献   

18.
The cationic monomer, N,N‐diallyl‐(diethylphosphonato)methylammonium chloride, and zwitterionic monomer, ethyl 3‐(N,N‐diallylammonio)methanephosphonate, were cyclopolymerized in aqueous solutions using ammonium persulfate or t‐butylhydroperoxide as initiators to afford a cationic polyelectrolyte (CPE) and a polyzwitterion ester (PZE), respectively. The CPE and PZE on acidic hydrolysis of the ester functionalities afforded the same polyzwitterionic acid (PZA): poly[3‐(N,N‐diallylammonio)methanephosphonic acid]. The solution properties of the CPE, pH‐responsive PZE, and PZA were studied in detail by potentiometric and viscometric techniques. Basicity constants of the phosphonate (P?O(OEt)O?) and amine groups in the PZE and in the conjugate base of the PZE, respectively, were found to be “apparent” and as such follow the modified Henderson–Hasselbalch equation. In contrast to many polycarbobetaines and sulfobetaines, PZE was found to be soluble in salt‐free water as well as salt (including Ca2+, Li+)‐added solutions, and demonstrated “antipolyelectrolyte” solution behavior. The PZA, on the other hand, was found to be insoluble in salt‐free water, and on treatment with NaOH gave dianionic polyelectrolyte (DAPE) containing trivalent nitrogen and [P?O(O)22?] groups. For the first time, several new phase diagrams of polyethylene glycol‐DAPE aqueous two‐phase systems (ATPSs) have been constructed in the presence of varying proportions of HCl. The ATPSs may find application in affinity partitioning of metal ions because DAPE is expected to be an effective chelator. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

19.
Samples of a polyelectrolyte poly(methacryloylethyl trimethylammonium methylsulfate), PMETMMS, with molar masses Mw = 22−25 × 106 were examined with viscosity, static light scattering, and conductivity measurements in a water–acetone solvent. Because acetone is a nonsolvent for this polymer the measurements were performed to determine the influence of the solvent composition, the polymer concentration, and the presence of added ions on the conformation of the polyelectrolyte in mixed solvents. The possible influence of a hydrodynamic field on the polymer conformation was also studied. The viscosity of the polymer solutions as a function of polymer concentration, as well as of the solvent composition, was studied using a broad range of shear rates. When the mass fraction of acetone in the solvent, γ, is below 0.5, the solutions show a usual polyelectrolyte behavior. When γ ≥ 0.80, the polymer adopts a compact conformation. This is observed as a decrease of the radius of gyration, Rg, second virial coefficient, A2, the viscosity, and also as a change in the conductivity of the solution. The change in the polymer conformation may be induced also by dilution. When 0.60 ≤ γ < 0.80, a gradual decrease in the polymer concentration leads to a sudden decrease of the reduced viscosity, which indicates a decrease in the particle size. The values of Mw measured by static light scattering were constant in all experiments. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 1107–1114, 1998  相似文献   

20.
Metal complex formation was investigated for di‐exo‐, di‐endo‐ and trans‐2,3‐ and 2,5‐disubstituted trinorbornanediols, and di‐exo‐ and di‐endo‐ 2,3‐disubstituted camphanediols using different divalent transition metals (Co2+, Ni2+, Cu2+) and electrospray ionization quadrupole ion trap mass spectrometry. Many metal‐coordinated complex ions were formed for cobalt and nickel: [2M+Met]2+, [3M+Met]2+, [M–H+Met]+, [2M–H+Met]+, [M+MetX]+, [2M+MetX]+ and [3M–H+Co]+, where M is the diol, Met is the metal used and X is the counter ion (acetate, chloride, nitrate). Copper showed the weakest formation of metal complexes with di‐exo‐2,3‐disubstituted trinorbornanediol yielding only the minor singly charged ions [M–H+Cu]+, [2M–H+Cu]+ and [2M+CuX]+. No clear differences were noted for cobalt complex formation, especially for cis‐2,3‐disubstituted isomers. However, 2,5‐disubstituted trinorbornanediols showed moderate diastereomeric differentiation because of the unidentate nature of the sterically more hindered exo‐isomer. trans‐Isomers gave rise to abundant [3M–H+Co]+ ion products, which may be considered a characteristic ion for bicyclo[221]heptane trans‐2,3‐ and trans‐2,5‐diols. To differentiate cis‐2,3‐isomers, the collision‐induced dissociation (CID) products for [3M+Co]2+, [M+CoOAc]+, [2M–H+Co]+ and [2M+CoOAc]+ cobalt complexes were investigated. The results of the CID of the monomeric and dimeric metal adduct complexes [M+CoOAc]+ and [2M–H+Co]+ were stereochemically controlled and could be used for stereochemical differentiation of the compounds investigated. In addition, the structures and relative energies of some complex ions were studied using hybrid density functional theory calculations. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号