首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
trans‐[Ln(NO3)2(Ph3AsO)4](NO3)2 ( 1 ) and mer‐[Ln(NO3)3(Ph3AsO)3] ( 2 ) complexes were prepared from Ln(NO3)3 · xH2O and Ph3AsO in chloroform (Ln = Y, Sm, Eu, Tb, and Dy). Production of complexes 1 vs. 2 and solvent content was found to be highly dependent on crystallization solvent choice. Tb and Eu produced only 1 , while the other Ln metals produced both 1 and 2 . Solvent‐free, acetone‐, and methanol‐containing polymorph series were identified for complexes 1 . Acetone/ether‐ and CH2Cl2‐containing polymorph series were identified for complexes 2 . Luminescence measurements were performed on solvent‐free 1 (Ln = Y, Eu, Tb, and Dy) and 2 (Ln = Sm) at 78 K. Sensitized lanthanide emission bands via resonance energy transfer were observed in all cases, except the control (Ln = Y). The efficiency of this energy transfer process varies amongst the lanthanide metals studied and was rationalized using Latva's empirical rule and Density Functional Theory calculations.  相似文献   

2.
Seven lanthanide complexes [Ln(OPPh3)3(NO3)3] ( 1 – 3 ) (OPPh3 = triphenylphosphine oxide, Ln = Nd, Sm, Gd), [Dy(OPPh3)4(NO3)2](NO3) ( 4 ), [Ln(OPPh3)3(NO3)3]2 ( 5 – 7 ) (Ln = Pr, Eu, Gd) were synthesized by the reactions of different lanthanide salts and OPPh3 ligand in the air. These complexes were characterized by single‐crystal X‐ray diffraction analysis, elemental analysis, IR and fluorescence spectra. Structure analysis shows that complexes 1 – 4 are mononuclear complexes formed by OPPh3 ligands and nitrates. The asymmetric units of complexes 5 – 7 consist of two crystallographic‐separate molecules. Complex 1 is self‐assembled to construct a 2D layer‐structure of (4,4) net topology by hydrogen bond interactions. The other complexes show a 1D chain‐like structure that was assembled by OPPh3 ligands and nitrate ions through C–H ··· O interactions. Solid emission spectra of compounds 4 and 6 are assigned to the characteristic fluorescence of Tb3+ (λem = 480, 574 nm) and Eu3+ (λem = 552, 593, 619, 668 nm).  相似文献   

3.
Direct thermally induced reactions between rare earth metals (Ln = Y,Ce, Dy, Ho, and Er) activated by Hg metal and 3,5‐diphenylpyrazole (Ph2pzH) or 3,5‐di‐tert‐butylpyrazole (tBu2pzH) yielded either homoleptic complexes [Lnn(R2pz)3n] or a heteroleptic complex [Ln(Ph2pz)3(Ph2pzH)2] From Ph2pzH, [Ce3(Ph2pz)9], [Dy2(Ph2pz)6], [Ho2(Ph2pz)6], and [Y(Ph2pz)3(Ph2pzH)2] were isolated. The first has a bowed trinuclear Ce3 backbone with two η2 pyrazolate ligands on the terminal metal atoms and one on the middle, and bridging by both μ‐η22 and μ‐η25 ligands between the terminal and the central Ce atoms. Although both the Dy and Ho complexes are dinuclear, the former has the rare μ‐η21 bridging whilst the latter has μ‐η22 bridging. Thus the dysprosium complex is seven‐coordinate and the holmium is eight‐coordinate, in contrast to any correlation with Ln3+ ionic radii, and the series has a remarkable structural discontinuity. The heteroleptic Y complex is eight coordinate with three chelating Ph2pz and two transoid unidentate Ph2pzH ligands. From tBu2pzH, dimeric [Ln2(tBu2pz)4] (Ln = Ce, Er) were isolated and are isomorphous with eight coordinate Ln atoms ligated by two chelating terminal tBu2pz and two μ‐η22 tBu2pz donor groups. They are also isomorphous with previously reported La, Nd, Yb, and Lu complexes.  相似文献   

4.
《Polyhedron》2001,20(15-16):2055-2062
The reaction of Ln(NO3)3·6H2O (Ln=lanthanide except Pm) with Ph2MePO in a 1:3 or 1:4 ratio in acetone or ethanol produces [Ln(Ph2MePO)3(NO3)3] which have been characterised by analysis, IR, 1H and 31P{1H} NMR spectroscopy and conductance measurements. The [Ln′(Ph2MePO)3(NO3)3] (Ln′=Pr–Tb) exist only as tris complexes in solution and are unaffected by the presence of excess Ph2MePO. In contrast the [Ln″(Ph2MePO)3(NO3)3] (Ln″=Ho–Lu) partially decompose in CH2Cl2 solution into [Ln″(Ph2MePO)4(NO3)2]+, and [Ln″(Ph2MePO)4(NO3)2]PF6 are readily isolated from Ln″(NO3)3, Ph2MePO and NH4PF6 in acetone. For lanthanum only, a neutral 1:4 complex [La(Ph2MePO)4(NO3)3] was isolated. X-ray crystal structures show that [La(Ph2MePO)3(NO3)3] contains nine-coordinate La, whilst [La(Ph2MePO)4(NO3)3xMe2CO contains a ten-coordinate metal centre. The structure of [Yb(Ph2MePO)4(NO3)2]PF6 reveals an eight-coordinate cation and all complexes contain bidentate nitrato-groups.  相似文献   

5.
The cyanide building block [FeIII(pzphen)(CN)4] and its four lanthanide complexes [{FeIII(pzphen)(CN)4}2LnIII(H2O)5(DMF)3] · (NO3) · 2(H2O) · (CH3CN) [Ln = Nd ( 1 ), Sm ( 2 ), DMF = dimethyl formamide] and [{FeIII(pzphen)(CN)4}2LnIII(NO3)(H2O)2(DMF)2](CH3CN) [Ln = Gd ( 3 ), Dy ( 4 )] were synthesized and structurally characterized by single‐crystal X‐ray diffraction. Compounds 1 and 2 are ionic salts with two [FeIII(pzphen)(CN)4] cations and one LnIII ion, but compounds 3 and 4 are cyano‐bridged FeIIILnIII heterometallic 3d‐4f complexes exhibiting a trinuclear structure in the same conditions. Magnetic studies show that compound 3 is antiferromagnetic between the central FeIII and GdIII atoms. Furthermore, the trinuclear cyano‐bridged FeIII2DyIII compound 4 displays no single‐molecular magnets (SMMs) behavior by the alternating current magnetic susceptibility measurements.  相似文献   

6.
New transition metal compounds of the general formula Ln(NO3)3·2[N4(CH2)6]·nH2O, where Ln = La, Nd, Sm, Gd, Tb, Dy, Er, Lu, and n = 7-12, were obtained. The compounds and the gases evolved in the course of their thermal decomposition were characterised by thermogravimetric analysis. The measurements were carried out in air and argon environment in order to compare the intermediate products, final products and the mechanism of the thermal decomposition. The combined TG-MS system was used to identify the main volatile products of thermal decomposition and fragmentation processes of the obtained compounds. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

7.
Five dinuclear lanthanide complexes [Ln2L2(NO3)2(OAc)4] · 2CH3CN [Ln = Gd ( 1 ), Tb ( 2 ), Dy ( 3 ), Ho ( 4 ), and Er ( 5 )] [L = 2‐((2‐pyridinylmethylene)hydrazine)ethanol] were synthesized from the reactions of Ln(NO3)3 · 6H2O with L and CH3COOH in the presence of triethylamine. Their crystal structures were determined. They show similar dinuclear cores with the two lanthanide ions bridged by four acetate ligands in the μ2‐η12 and μ2‐η11 bridging modes. Each LnIII ion in complexes 1 – 5 is further chelated by one L ligand and one nitrate ion, leading to the formation of a nine‐coordinated mono‐capped square antiprism arrangement. The dinuclear molecules in 1 – 5 are consolidated by hydrogen bonds and π ··· π stacking interactions to build a two‐dimensional sheet. Their magnetic properties were investigated. It revealed antiferromagnetic interactions between the GdIII ions in 1 and ferromagnetic interactions between the TbIII ions in 2 . The profiles of χmT vs. T curves of 3 – 5 reveal that the magnetic properties of 3 – 5 are probably dominated by the thermal depopulation of the Stark sublevels of LnIII ions.  相似文献   

8.
Employing nitronyl nitroxide lanthanide(III) complexes as metallo‐ligands allowed the efficient and highly selective preparation of three series of unprecedented hetero‐tri‐spin (Cu?Ln‐radical) one‐dimensional compounds. These 2p–3d–4f spin systems, namely [Ln3Cu(hfac)11(NitPhOAll)4] (LnIII=Gd 1Gd , Tb 1Tb , Dy 1Dy ; NitPhOAll=2‐(4′‐allyloxyphenyl)‐4,4,5,5‐tetramethylimidazoline‐1‐oxyl‐3‐oxide), [Ln3Cu(hfac)11(NitPhOPr)4] (LnIII=Gd 2Gd , Tb 2Tb , Dy 2Dy , Ho 2Ho , Yb 2Yb ; NitPhOPr=2‐(4′‐propoxyphenyl)‐4,4,5,5‐tetramethyl‐imidazoline‐1‐oxyl‐3‐oxide) and [Ln3Cu(hfac)11(NitPhOBz)4] (LnIII=Gd 3Gd , Tb 3Tb , Dy 3Dy ; NitPhOBz=2‐(4′‐benzyloxyphenyl)‐4,4,5,5‐tetramethyl‐imidazoline‐1‐oxyl‐3‐oxide) involve O‐bound nitronyl nitroxide radicals as bridging ligands in chain structures with a [Cu‐Nit‐Ln‐Nit‐Ln‐Nit‐Ln‐Nit] repeating unit. The dc magnetic studies show that ferromagnetic metal–radical interactions take place in these hetero‐tri‐spin chain complexes, these and the next‐neighbor interactions have been quantified for the Gd derivatives. Complexes 1Tb and 2Tb exhibit frequency dependence of ac magnetic susceptibilities, indicating single‐chain magnet behavior.  相似文献   

9.
Three series of copper–lanthanide/lanthanide coordination polymers (CPs) LnIIICuIICuI(bct)3(H2O)2 [Ln=La ( 1 ), Ce ( 2 ), Pr ( 3 ), Nd ( 4 ), Sm ( 5 ), Eu ( 6 ), Gd ( 7 ), Tb ( 8 ), Dy ( 9 ), Er ( 10 ), Yb ( 11 ), and Lu ( 12 ), H2bct=2,5‐bis(carboxymethylmercapto)‐1,3,4‐thiadiazole acid], LnIIICuI(bct)2 [Ln=Ce ( 2 a ), Pr ( 3 a ), Nd ( 4 a ), Sm ( 5 a ), Eu ( 6 a ), Gd ( 7 a ), Tb ( 8 a ), Dy ( 9 a ), Er ( 10 a ), Yb ( 11 a ), and Lu ( 12 a )], and LnIII2(bct)3(H2O)5 [Ln=La ( 1 b ), Ce ( 2 b ), Pr ( 3 b ), Nd ( 4 b ), Sm ( 5 b ), Eu ( 6 b ), Gd ( 7 b ), Tb ( 8 b ), and Dy ( 9 b )] have been successfully constructed under hydrothermal conditions by modulating the reaction time. Structural characterization has revealed that CPs 1 – 12 possess a unique one‐dimensional (1D) strip‐shaped structure containing two types of double‐helical chains and a double‐helical channel. CPs 2 a – 12 a show a three‐dimensional (3D) framework formed by CuI linking two types of homochiral layers with double‐helical channels. CPs 1 b – 9 b exhibit a 3D framework with single‐helical channels. CPs 6 b and 8 b display visible red and green luminescence of the EuIII and TbIII ions, respectively, sensitized by the bct ligand, and microsecond‐level lifetimes. CP 8 b shows a rare magnetic transition between short‐range ferromagnetic ordering at 110 K and long‐range ferromagnetic ordering below 10 K. CPs 9 a and 9 b display field‐induced single‐chain magnet (SCM) and/or single‐molecule magnet (SMM) behaviors, with Ueff values of 51.7 and 36.5 K, respectively.  相似文献   

10.
Reaction of DyCl3 with two equivalents of NaN(SiMe3)2 in THF yielded {Dy(μ‐Cl)[N(SiMe3)2]2(THF)}2 ( 1 ). X‐ray crystal structure analysis revealed that 1 is a centrosymmetric dimer with asymmetrically bridging chloride ligands. The metal coordination arrangement can be best described as distorted trigonal bipyramid. The bond lengths of Ln–Cl and Ln–N showed a decreasing trend with the contraction of the size of Ln3+. Treatment of N,N‐bis(pyrrolyl‐α‐methyl)‐N‐methylamine (H2dpma) with 1 and known compound {Yb(μ‐Cl)[N(SiMe3)2]2(THF)}2, respectively, led to the formations of [Dy(μ‐Cl)(dpma)(THF)2]2 ( 2 ) and {Yb(μ‐Cl)[N(SiMe3)2]2(THF)}2 ( 3 ). Compounds 2 and 3 were fully characterized by single‐crystal X‐ray crystallography, elemental analysis, and 1H NMR spectroscopy. Structure determination indicated that 2 and 3 exhibit as centrosymmetric dimers with asymmetrically bridging chloride ligands. One pot reactions involving LnCl3 (Ln = Dy and Yb), LiN(SiMe3)2, and H2dpma were explored and desired products 2 and 3 were not yielded, which indicated that 1 and {Yb(μ‐Cl)[N(SiMe3)2]2(THF)}2 are the demanding precursors to synthesize Dysprosium and Ytterbium complexes supported by dpma2– ligand. Compounds 2 and 3 are the first reported lanthanide complexes chelated by dpma2– ligand.  相似文献   

11.
An earlier reported series of the [Ln(Ur)4(H2O)4]I3 (Ln = Y, La, Nd, Eu, Gd, Dy, Ho, Er; Ur = urea) complexes was completed with seven new compounds (Ln = Ce, Pr, Sm, Tb, Tm, Yb, Lu); one of them, [Ce(Ur)4(H2O)4]I3, was studied by X‐ray diffraction. The most striking feature of the [Ln(Ur)4(H2O)4]I3 structures is the presence of two types of coordinated urea molecules. There are two planar symmetric and two non‐planar asymmetric urea molecules. The Ln–O–C bond angles vary in the ranges 163.06–165.71° and 148.42–152.42° for symmetric and asymmetric urea ligands, respectively, correlating with the ionic mode of urea coordination. To elucidate the role of aqua ligands for the urea coordination mode, two water‐free perchlorate complexes, [La(Ur)8](ClO4)3 · 2Ur and [La(Ur)7(OClO3)](ClO4)2 were synthesized and structurally characterized. In these complexes, all urea molecules are planar symmetric; however, both covalent and ionic types of urea coordination with the La–O–C bond angles varying in the 132.4–142.3° and 145.5–159.1° ranges, respectively can be observed.  相似文献   

12.
Reactions of the oxorhenium(V) complexes [ReOX3(PPh3)2] (X = Cl, Br) with the N‐heterocyclic carbene (NHC) 1,3,4‐triphenyl‐1,2,4‐triazol‐5‐ylidene (LPh) under mild conditions and in the presence of MeOH or water give [ReOX2(Y)(PPh3)(LPh)] complexes (X = Cl, Br; Y = OMe, OH). Attempted reactions of the carbene precursor 5‐methoxy‐1,3,4‐triphenyl‐4,5‐dihydro‐1H‐1,2,4‐triazole ( 1 ) with [ReOCl3(PPh3)2] or [NBu4][ReOCl4] in boiling xylene resulted in protonation of the intermediately formed carbene and decomposition products such as [HLPh][ReOCl4(OPPh3)], [HLPh][ReOCl4(OH2)] or [HLPh][ReO4] were isolated. The neutral [ReOX2(Y)(PPh3)(HLPh)] complexes are purple, airstable solids. The bulky NHC ligands coordinate monodentate and in cis‐position to PPh3. The relatively long Re–C bond lengths of approximate 2.1Å indicate metal‐carbon single bonds.  相似文献   

13.
We report the synthesis of Ln3+ nitrate [Ln(Tpm)(NO3)3] ⋅ MeCN (Ln=Yb ( 1Yb ), Eu ( 1Eu )) and chloride [Yb(Tpm)Cl3] ⋅ 2MeCN ( 2Yb ), [Eu(Tpm)Cl2(μ-Cl)]2 ( 2Eu ) complexes coordinated by neutral tripodal tris(3,5-dimethylpyrazolyl)methane (Tpm). The crystal structures of 1Ln and 2Ln were established by single crystal X-ray diffraction, while for 1Yb high resolution experiment was performed. Nitrate complexes 1Ln are isomorphous and both adopt mononuclear structure. Chloride 2Yb is monomeric, while Eu3+ analogue 2Eu adopts a binuclear structure due to two μ2-bridging chloride ligands. The typical lanthanide luminescence was observed for europium complexes ( 1Eu and 2Eu ) as well as for terbium and dysprosium analogues ([Ln(Tpm)(NO3)3] ⋅ MeCN, Ln=Tb ( 1Tb ), Dy ( 1Dy ); [Ln(Tpm)Cl3] ⋅ 2MeCN, Ln=Tb ( 2Tb ), Dy ( 2Dy )).  相似文献   

14.
The reaction of the nitrates M(NO3)3·6H2O (M = La, Pr) and (H3O)2PtCl6 led to yellow single crystals of [M(NO3)2(H2O)6]2[PtCl6]·2H2O (M = La, Pr) (monoclinic, P21/c, Z = 2, La/Pr: a = 697.4(3)/695.5(1), b = 1654.5(1)/1652.5(2), c = 1317.7(6)/1318.5(3) pm, β = 93.97°(7)/93.93°(2), Rall = 0.0169/0.0659) while the reaction of M(NO3)3·5H2O (M = Gd, Dy) and (H3O)2PtCl6 yielded yellow single crystals of [M(NO3)(H2O)7][PtCl6]·4H2O (monoclinic, P21/n, Z = 4, Gd/Dy: a = 838.72(3)/838.40(2), b = 2131.98(6)/2139.50(7), c = 1142.63(3)/1143.10(3) pm, β = 95.670(4)/95.698(3), Rall = 0.0475/0.0337). The crystal structures consist of octahedral [PtCl6]2? anions and complex [M(NO3)2(H2O)6]2+ and [M(NO3)(H2O)7]2+ cations, respectively. The thermal decomposition of both types of compounds leads via various steps to elemental platinum and the oxide chlorides MOCl (M = La, Pr, Gd, Dy).  相似文献   

15.
Six lanthanide complexes [Ln(pmc)2NO3]n [Hpmc = pyrimidine‐2‐carboxylic acid, Ln = La ( 1 ), Pr ( 2 )], [Ln(pmc)2(H2O)3]NO3 · H2O [Ln = Eu ( 3 ), Tb ( 4 ) Dy ( 5 ), Er ( 6 )] were synthesized by the reactions of lanthanide nitrate and pyrimidine‐2‐carboxylic acid in water at room temperature. These complexes were characterized by single‐crystal X‐ray diffraction analysis, elemental analysis, IR, circular dichroism (CD) and fluorescence spectra. Structure analysis shows that complexes 1 and 2 are isostructural with P43212 space group, whereas isostructural complexes 3 – 6 belong to the P21/c space group. In complexes 1 and 2 , the central metal atoms are coordinated by nitrates and pmc, which are self‐assembled to construct a 3D porous network with 62.62.62.62.62.62 (66) topology. In complexes 3 – 6 , H2O and pmc ligands are coordinated and the complexes exhibit a one‐dimensional zigzag chain, which is further expanded into a 3D structure by hydrogen bonding. In addition, the circular dichroism of 1 and 2 proves that the two complexes are both chiral with achiral ligand of Hpmc. Luminescent measurements of compounds 3 – 5 indicate that the characteristic fluorescence of Eu3+, Tb3+, and Dy3+ are observed.  相似文献   

16.
Two series of isostructural C3‐symmetric Ln3 complexes Ln3 ? [BPh4] and Ln3 ? 0.33[Ln(NO3)6] (in which LnIII=Gd and Dy) have been prepared from an amino‐bis(phenol) ligand. X‐ray studies reveal that LnIII ions are connected by one μ2‐phenoxo and two μ3‐methoxo bridges, thus leading to a hexagonal bipyramidal Ln3O5 bridging core in which LnIII ions exhibit a biaugmented trigonal‐prismatic geometry. Magnetic susceptibility studies and ab initio complete active space self‐consistent field (CASSCF) calculations indicate that the magnetic coupling between the DyIII ions, which possess a high axial anisotropy in the ground state, is very weakly antiferromagnetic and mainly dipolar in nature. To reduce the electronic repulsion from the coordinating oxygen atom with the shortest Dy?O distance, the local magnetic moments are oriented almost perpendicular to the Dy3 plane, thus leading to a paramagnetic ground state. CASSCF plus restricted active space state interaction (RASSI) calculations also show that the ground and first excited state of the DyIII ions are separated by approximately 150 and 177 cm?1, for Dy3 ? [BPh4] and Dy3 ? 0.33[Dy(NO3)6], respectively. As expected for these large energy gaps, Dy3 ? [BPh4] and Dy3 ? 0.33[Dy(NO3)6] exhibit, under zero direct‐current (dc) field, thermally activated slow relaxation of the magnetization, which overlap with a quantum tunneling relaxation process. Under an applied Hdc field of 1000 Oe, Dy3 ? [BPh4] exhibits two thermally activated processes with Ueff values of 34.7 and 19.5 cm?1, whereas Dy3 ? 0.33[Dy(NO3)6] shows only one activated process with Ueff=19.5 cm?1.  相似文献   

17.
Two LnIII ions are sandwiched by dinuclear CoII building blocks derived from a tris‐triazamacrocyclic ligand bearing pendant carboxylic acid functionality, 1,3,5‐tris((4,7‐bis(2‐carboxyethyl)‐1,4,7‐triazacyclonon‐1‐yl)methyl)‐benzene (H6L), giving rising to two nanoscale heterometallic metal–organic cages formulated as [Co4Ln2(LH2.5)2(H2O)4]·(ClO4)6·NO3·nH2O [Ln = Dy, n = 12 ( 1 ); Ln = Yb, n = 9 ( 2 )], whose internal cavity accommodates a guest NO3? anion. Their hexanuclear cage‐like architectures are maintained both in solution and solid states as confirmed by mass spectrum as well as X‐ray diffraction experiments. These two cages display ligand‐based fluorescence emissions and therefore both were chosen to be operated as fluorescent chemosensors for the detection of nitroaromatic compounds. Attractively, these metal–organic cages allow highly selective and sensitive detection of picric acid (PA) over other nitroaromatics in solution and suspension, and the fluorescence resonance energy transfer (FRET) between the cage probes and PA is mainly responsible for the remarkable detection efficiency.  相似文献   

18.
The reaction of a lanthanide(III) nitrate (Ln = Pr, Nd) with the base 2, 2′‐dipyridylamine (dpamH) afforded two very stable microcrystalline compounds. These compounds were characterized as complex salts with the general formula [Ln(NO3)6] · 3[dpamH‐H+] · H2O, where the dpamH ligand is not coordinated, but exists in its protonated form serving as counterion (dipyridylammonium cation), as it was revealed by single‐crystal X‐ray diffraction studies. Each one of the nitrate ions is coordinated, however, in a bidentate manner with the lanthanide(III) ion, which obtains coordination number twelve. All organic dpamH‐H+ cations are arranged in two columns parallel to the a axis of the cell forming pairs of almost parallel cationic molecules at a distance of about 3.5 Å. Inside each pair the molecules interact by strong π–π interactions. The water molecules, arranged between the inorganic anions [Ln(NO3)6]3–, bridge them by strong hydrogen bonds, involving the water proton and one nitrate oxygen. The lattice can be described as made from successive organic and inorganic alternating parallel columns interacting between them with strong hydrogen bonds. The thermal stability and decomposition mode of the two lanthanide compounds were studied by the simultaneous TG/DTG‐DTA technique and compared with the starting hexahydrate lanthanide(III) salts and the dipyridylamine.  相似文献   

19.
《Polyhedron》2001,20(15-16):2045-2053
Two new poly(pyrazolyl)borate ligands have been prepared: potassium tris[3-{(4-tbutyl)-pyrid-2-yl}-pyrazol-1-yl]hydroborate (KTpBuPy) which has three bidentate arms and is therefore hexadentate; and potassium bis[3-(2-pyridyl)-5-(methoxymethyl)pyrazol-1-yl]-dihydroborate (KBp(COC)Py) which has two bidentate arms and is therefore tetradentate. The crystal structures of their lanthanide complexes [La(TpBuPy)(NO3)2] and [La(Bp(COC)Py)2X] (X=nitrate or triflate) have been determined. In [La(TpBuPy)(NO3)2] the metal ion is ten-coordinate, from the hexadentate N-donor podand ligand and two bidentate nitrates. [La(Bp(COC)Py)2(NO3)] is also ten-coordinate, from two tetradentate ligands and a bidentate nitrate, but in [La(Bp(COC)Py)2(CF3SO3)] the metal ion is nine-coordinate because the triflate anion is monodentate. Two unexpected new complexes which arose from partial decomposition of the poly(pyrazolyl)borate ligands have also been characterised structurally. In [La(BuPypzH)3(O3SCF3)3] the metal ion is nine-coordinate from three bidentate pyrazolyl-pyridine arms (liberated by decomposition of KTpBuPy) and three triflate anions; there is extensive NH· · · O hydrogen-bonding between the pyrazolyl and triflate ligands. [Nd(TpPy)(BpPy)][Nd(PypzH)(NO3)4] was isolated from the reaction of hexadentate tris[3-(2-pyridyl)-pyrazol-1-yl]hydroborate (TpPy) with Nd(NO3)3. One of the TpPy ligands has lost one bidentate pyrazolyl-pyridine ‘arm’ (PypzH) to leave tetradentate tris[3-(2-pyridyl)-pyrazol-1-yl]dihydroborate (BpPy). In this structure, the cation [Nd(TpPy)(BpPy)]+ is ten-coordinate from inter-leaved hexadentate and tetradentate ligands, and the anion [Nd(PypzH)(NO3)4] is also ten-coordinate from the bidentate N-donor ligand PypzH and four bidentate nitrates.  相似文献   

20.
Complexes of lanthanide nitrates with 2-methylpyridine-1-oxide of the formuleLn(2-MePyO)3(NO3)3 whereLn=Nd, Sm, Tb, Dy and Yb and La(2-MePyO)3(NO3)3·2H2O have been prepared and characterized by chemical analyses, IR spectral, conductance andDTA data. IR spectral data have been interpreted in terms of the coordination of the ligand to the metal through the oxygen of the N–O group. Conductance and IR spectral data show that all the nitrate groups are bidentate and that two of the nitrate groups are bound to the metal in a different manner than the other.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号