首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The flexible polyurethane (PU) foam‐filled composite sandwiches are constructed using three types of needle‐punched fabrics (upper layer), PU foam (core layer), and nylon (bottom layer). Different contents of deionized water were used to adjust the pore size and bulk density of PU foam by free‐foaming. Effects of needle‐punched fabric components, cell structure, and fabric‐foam interface on sound absorption and compressive property of the composite sandwiches were investigated. Fabric‐foam interface contributes to improve high‐frequency sound absorption efficiency. When containing 0.5 wt% water in the core and nylon‐glass grid needle‐punched composite fabric (NPUN‐G) in the upper face, the composite sandwiches exhibited optimal sound absorption of 0.78 at low frequency of 450 Hz, and optimal compressive strength of 14.4 kPa. Combination of needle‐punched composite fabric improved the sound absorption coefficient and compressive strength, as high as 223% and 121%, respectively, compared with pure PU foam. This study provided an important basis for the preparation of high‐strength composite sandwiches with low‐frequency sound absorption.  相似文献   

2.
The production of flexible polyurethane foams (FPF) with good acoustical performance to control sound and noise and incorporating bio/recycled raw materials is an interesting alternative to conventional acoustic absorbent materials. In this sense, biobased polyols like glycerol (GLY) or hydroxylated methyl esters derived from tung oil (HMETO) as multifunctional polyols, and waste tire particles (WTP) as fillers of low thermal conductivity and good capability for acoustical absorption, are prospective feedstocks for FPF preparation. In this work, FPF were prepared by adding different amounts of these components to a formulation based on a commercial polyether polyol. Results of scanning electron microscopy (SEM) analysis, compression tests and normal-incidence sound absorption coefficient (αN) measurements are presented and discussed. The addition of WTP or GLY to the commercial formulation enhanced both the modulus and yield stress of the obtained FPF in all cases. Moreover, a high recovery of the applied strain (>90%) was attained 24 h after the compression tests. On the other hand, the normal-incidence sound absorption coefficient, αN, reached high values mostly at the highest evaluated frequencies (αN ∼0.62–0.89 at 2000 Hz and αN ∼0.70–0.91 at 5000 Hz). SEM micrographs revealed that the foams obtained present a combination of open and closed cell structure and both the modifiers and particles tend to decrease the cell size.  相似文献   

3.
A new amphiphilic copolymer TD‐A is melt‐blended with polyvinylidene fluoride to fabricate hollow fiber membranes in order to improve the hydrophilicity and anti‐fouling property. Membrane samples with different blending ratios are prepared via thermally induced phase separation method. An optimum blending ratio of TD‐A (10 wt%) is determined by a series of characterizations to evaluate the effects of TD‐A contents on membrane properties. The hydrophilicity of the blended membrane samples increases with the increasing blending ratio, but excessive content of TD‐A in blended membranes can lead to structural defects and reduction of mechanical properties. TD‐A blended hollow fiber membrane with optimum blending ratio shows excellent bi‐continuous structure and high water flux. Membrane fouling is remarkably reduced due to the incorporation of TD‐A by static absorption and cyclic filtration tests of bovine serum albumin. Moreover, constant surface chemical compositions and stable flux during long‐term chemical cleaning demonstrate the hydrophilic stability of the blended membrane.  相似文献   

4.
《先进技术聚合物》2018,29(1):424-432
Diatomite nanoplatelets were used for in situ random copolymerization of styrene and methyl methacrylate by reverse atom transfer radical polymerization to synthesize different well‐defined nanocomposites. Inherent features of the pristine diatomite nanoplatelets were evaluated by Fourier transform infrared spectroscopy, nitrogen adsorption/desorption isotherm, scanning electron microscope, and transmission electron microscope. Gas and size exclusion chromatography was also used to determine conversion and molecular weight determinations, respectively. Considerable increment in conversion (from 81% to 97%) was achieved by adding 3 wt% diatomite nanoplatelets in the copolymer matrix. Moreover, molecular weight of random copolymer chains was increased from 12 890 to 13 960 g·mol−1 by addition of 3 wt% diatomite nanoplatelets; however, polydispersity index (PDI) values increases from 1.36 to 1.59. Proton nuclear magnetic resonance spectroscopy was used to evaluate copolymers composition. Thermal gravimetric analysis results indicate that thermal stability of the nanocomposites is improved by adding diatomite nanoplatelets. Differential scanning calorimetry shows an increase in glass transition temperature from 66°C to 71°C by adding 3 wt% of diatomite nanoplatelets.  相似文献   

5.
The interposition of surfactants between polymer and liquid crystal (LC) droplets was theoretically predicted by the positive spreading coefficient (0 < λ31) and utilized to interpret the morphology, grating formation kinetics, diffraction efficiency, and switching of the holographic polymer dispersed liquid crystal (HPDLC), prepared from various types (octanoic acid, poly oxyethylene octyl phenyl ether, and perfluoro‐1‐butanesulfonyl fluoride) and amounts (0–9 wt%) of surfactant and molecular weights of polyol (PPG). Regardless of the surfactant type, diffraction efficiency increased with the addition and increasing amount of surfactant, a tendency consistent with increasing value of spreading coefficient, which is determined by the formulations of grating formation. In contrast, diffraction efficiency showed a maximum with the polypropylene glycol (PPG) molecular weight. Surfactant effectively reduced the anchoring energy and electrically drove the film which otherwise was not driven. Overall, surfactant with greater λ31 gave smaller droplet, greater diffraction efficiency, driving voltage, contrast ratio, and smaller response time. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

6.
The main objective of this study was to evaluate the sound absorption properties of rigid polyurethane foams (PUFs) produced from crude glycerol (CG) and/or liquefied coffee grounds derived polyol (POL). The lignin content of POL proved to have a major influence on the structure and mechanical properties of the foams. Indeed, the POL content increased the cell size of the foams and their stiffness, which subsequently influenced the sound absorption coefficients. The POL derived foam has slightly higher sound absorption coefficient values at lower frequencies, while the CG foam has higher sound absorption coefficient values at higher frequencies. In turn, the foam prepared using a 50/50 mixture of polyols presents slightly higher sound absorption coefficient values in the medium frequencies range due to a balance between the cell structure and the mechanical properties. The results obtained seem to suggest that the mechanisms involved in sound wave absorption depend on the formulation used to prepare the foams. Additionally higher POL contents improved the thermal stability of PUFs as well as their mechanical properties. From this work the suitability of CG and/or POL derived PUFs as sound absorbing materials has been proven.  相似文献   

7.
A series of regenerated cellulose membranes with pore diameters ranging from 21 to 52 nm have been prepared by dissolving cellulose in 5 wt% LiOH/12 wt% urea aqueous solution re-cooled to −12 °C. The influences of cellulose concentration on the structure, pore size, and the mechanical properties of the membrane were studied by using Wide angle X-ray diffraction, scanning electron micrography and tensile testing. Their pore size, water permeability, equilibrium-swelling ratio and fouling behaviors of the cellulose membranes were characterized. The water-soluble synthetic and natural polymers as organic matter were used to evaluate the microfiltration performance of the regenerated cellulose membrane for wastewater treatment in aqueous system. The results revealed that the organic matter with molecular weight more than 20 kDa effected significantly on the membrane pore density, and reducing factor a 2, whereas that having molecular weight less than 20 kDa exhibited a little influence on the membrane pore size reducing factor a 1. Furthermore, a simple model to illustrate of microfiltration process of the RC membrane for wastewater treatment was proposed.  相似文献   

8.
Isocyanate, polyether polyol, a flame retardant (10 wt%), and aluminum hydroxide/magnesium hydroxide (0, 5, 10, 15, and 20 wt%) are used to form the rigid polyurethane (PU) foam, while nylon nonwoven fabrics and a polyester aluminum foil are combined to serve as the panel. The rigid PU foam and panel are combined to form the rigid foam composites. The cell structure, compressive stress, combustion resistance, thermal stability, sound absorption, and electromagnetic interference shielding effectiveness (EMI SE) of the rigid foam composites are evaluated, examining the effects of using aluminum hydroxide and magnesium hydroxide. Compared with magnesium hydroxide, aluminum hydroxide exhibits superior performance to the rigid foam composites. When aluminum hydroxide is 20 wt%, the rigid foam composite has an optimal density of 0.153 g/cm3, an average cell size of 0.2466 mm, a maximum compressive stress of 546.44 Kpa, an optimal limiting oxygen index (LOI) of 29.5%, an optimal EMI SE of 40 dB, and excellent thermal stability and sound absorption.  相似文献   

9.
Polyvinyl alcohol (PVA) with different molecular weights (8000, 14,000, and 132,000 g/mol) capped lead selenide (PbSe) quantum dots (QDs) are prepared. The nanocomposites are characterized by X‐ray diffraction (XRD) and transmission electron microscopy (TEM). XRD and TEM studies show that the particle size of PbSe QDs decrease with the increase in PVA molecular weight and/or PVA amount. This may be due to the increase in molecular weight inhibiting further growth of PbSe into the polymer matrix. Thermogravimetric analysis showed that the introduction of PbSe QDs into PVA decreases the crystallinity of the polymer. The optical absorption spectroscopy of prepared nanocomposites showed that the absorption peaks are strongly shifted to the lower wavelength (blue shift) from near infrared region to visible region by increasing the PVA molecular weight. The (IV) characteristic curves of the PVA/PbSe nanocomposite films under illumination showed a photovoltaic cell‐like behavior. The results indicated that as the molecular weight of polymer increases, the conversion efficiency increases. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

10.
A new class of polylactic acid (PLA)/polyethylene glycol (PEG) copolymer reinforced with bacterial cellulose nanofibers (BC) was prepared using a solvent casting and particulate leaching methods. Four weight fractions of BC (1, 2.5, 5, and 10 wt%) were incorporated into copolymer via silane coupling agent. Mechanical properties were evaluated using response surface method (RSM) to optimize the impact of pore size, porosity, and BC contents. Compressive strength obtained for PLA/PEG-5 BC wt% was 9.8 MPa, which significantly dropped after developing a porous structure to 4.9 MPa. Nielson model was applied to investigate the BC stress concentration on the PLA/PEG. Likewise, krenche and Hapli-Tasi model were employed to investigate the BC nanofiber reinforcement and BC orientation into PLA/PEG chains. The optimal parameters of the experiment results found to be 5 wt% for BC, 230 μm for pore size, and 80% for porosity. Scanning electron microscopy (SEM) micrograph indicates that uniform pore size and regular pore shape were achieved after an addition of BC-5% into PLA/PEG. The weight loss of copolymer-BC with scaffolds enhanced to the double values, compared with PLA/PEG-BC % without scaffolds. Differential Scanning Calorimetric (DSC) results revealed that the BC nanofiber improved glass transition temperature (Tg) 57 °C, melting temperature (Tm) 171 °C, and crystallinity (χ %) 43% of PLA/PEG reinforced-BC-5%.  相似文献   

11.
Quasi-static and dynamic compressive tests are undertaken on the polyurethane (PU) foam and fumed silica reinforced polyurethane (PU/SiO2) foam experimentally. The ceramic microspheres with varying mass fractions are adopted to mix with the PU/SiO2 foam to fabricate the composite particle-reinforced foams. The effects of strain rate and particle mass fraction are discussed to identify and quantify the compressive response, energy-absorbing characteristic, and the associated mechanisms of the composite foams. The results show the initial collapse strength and plateau stress of the foams are improved significantly by reinforcing with the ceramic microsphere within 60 wt% at quasi-static compression. The rate sensitivity is observed on all the foams, but in different patterns due to the influence of ceramic microsphere. The compressive response affected by ceramic microsphere can be attributed to the particle cluster effect and stress wave propagation. Together with the deformation, the compressive characteristic experiences non-monotonic change from the low to high strain rates. The specific energy absorption (SEA) of the foam with 41 wt% ceramic microsphere show the largest magnitude at quasi-static compression. With the increasing strain rate, the ceramic reinforced foam exhibits superior energy absorption efficiency at high strain rates to that of the pure foams.  相似文献   

12.
以n BuLi为引发剂 ,四氢呋喃 (THF)为调节剂 ,抽余油为溶剂 ,采用丙烯酰氯为偶联剂对丁二烯 苯乙烯阴离子共聚体系进行偶联反应 ,研究了影响偶联反应的各种因素 ,如偶联剂用量、相对分子质量、偶联反应时间、偶联反应温度、THF用量、末端基团、单体浓度等 ;确定了偶联剂用量与聚合物相对臂数之间的关系及其偶联效率 .  相似文献   

13.
Nanofiltration (NF) grade hollow fiber membrane was prepared by incorporation of zinc chloride into polysulfone–polyethylene glycol (molecular weight 200) blend. A 1.0 wt% zinc chloride in the blend reduced the molecular weight cut off (MWCO) of hollow fibers from 44 kDa (average pore size 64A0) to a nanofiltration range of MWCO 870 Da (average pore size 7.69 A°). MWCO decreased further to 330 Da (average pore size 4.78 A°) on addition of 2.5 wt% zinc chloride. types of NF hollow fiber were spun, corresponding to zinc chloride concentration of 1.0, 1.5, 2.0, and 2.5 wt%. Ternary phase diagram qualitatively explained the denser morphology for various concentrations of zinc chloride. This was supported by scanning electron micrographs of cross‐section and top surface of hollow fibers. NF membranes possessed negative surface charge at extreme pH conditions. Rejection of 1000 mg/l sodium chloride solution was in between 38 to 45% at pH 11, and for divalent sodium sulfate, it was in the range of 55 to 62%. Rejection of dye congo red was found to be 100%. NF membranes showed reasonable antifouling characteristics having flux recovery ratio of more than 90% and a flux decline ratio of less than 10%. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

14.
Phase inversion method is applied to prepare flat sheet asymmetric polymeric membranes from homogeneous solution of 12 wt% polysulfone (PSf) with two different solvents--N-methyl-2-pyrrolidone (NMP) and dimethyl acetamide (DMAc). 5.0 wt% polyethylene glycol (PEG) of three different molecular weight (400, 6000, and 20,000 Da) is used as the polymeric additives in the casting solution. Membranes are characterized by two different techniques viz. scanning electron microscopy (SEM) and gas permeation tests. Finally, the results of both the techniques are compared with those calculated from pure water permeation tests using Hagen-Poiseuille equation. It is found that though the values obtained from all the techniques vary from each other, their trend with increase in molecular weight of PEG seems to be the same. It is seen that when molecular weight of PEG increases from 400 to 20,000 Da, the mean pore size of the prepared membranes decreases, while the porosity and pore density show an increasing trend; the pressure normalized gas flux rises significantly and the thickness of the top layer of the prepared membrane sheet increases.  相似文献   

15.
Synthesis of high temperature polyimide foams with pore sizes in the nanometer range was developed. Foams were prepared by casting graft copolymers comprising a thermally stable block as the matrix and a thermally labile material as the dispersed phase. The copolyimides as the matrix material were prepared via polycondensation reactions of pyromellitic dianhydride with three new diamines (4BAP, 3BAP, and BAN) through the poly(amic acid) precursors. Functionalized poly(propylene glycol) (PPGBr‐1000 and PPGBr‐2500) as the labile oligomer was prepared via reaction of poly(propylene glycol) monobutyl ether with 2‐bromoacetyl bromide. Graft copolymers were prepared by the reaction of the poly(amic acid)s with these thermally labile constituents. Upon thermal treatment the labile blocks were subsequently removed leaving pores with the size and shape of the original copolymer morphology. The polyimides and foamed polyimides were characterized by some conventional methods including FTIR, H‐NMR, DSC, TGA, SEM, TEM, and dielectric constant. The average pore size of the polyimide nanofoams was in the range of 5–20 nm. The structure–property relationships of the prepared nanofoams were investigated based on the diamine structures and also molecular weights of labile groups. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

16.
pH and temperature‐sensitive biodegradable poly(β‐aminoester)‐graft‐poly(ε‐caprolactone)‐block‐methoxy poly(ethylene glycol) (PBAE‐g‐PCL‐b‐mPEG) amphiphilic graft copolymers with different molecular weights were synthesized. The structure of these copolymers was adjusted by varying the feed ratios of ε‐caprolactone to methoxy poly(ethylene glycol)s (mPEG), amine and diacrylate monomer amounts and the molecular weight of mPEG. Aqueous solutions of these copolymers formed micelles at lower concentrations; however, the concentrated solutions showed a reversible sol–gel transition property depending on both pH and temperature changes under representative physiological conditions (pH 7.4, 37°C). The effects of the molecular weight of pH‐sensitive poly(β‐aminoester) block and mPEG group, the hydrophobic to hydrophilic block ratio (PCL/mPEG) and the concentration of the copolymer on the sol–gel transition were investigated. Proton nuclear magnetic resonance (1H NMR) and gel permeation chromatography measurements were used to characterize the structure of the synthesized copolymers. The self‐assemble behavior and critical micelle concentration of the amphiphilic copolymers were estimated in phosphate buffer solution using fluorescence spectroscopy. The gelling behavior was measured by using tube inversion method. At pH 7.4, all copolymer solutions prepared 20 wt% concentration indicated sol–gel transition with increasing temperature. In vitro degradation experiments displayed that the synthesized graft copolymers mostly degraded hydrolytically within 20 days under physiological conditions. In order to investigate the potential application of synthesized hydrogels in drug delivery, Methylene Blue was used and approximately 70% of the loaded amount was released in 120 hr. The findings indicate that obtained graft copolymers can be used as injectable biodegradable carriers for pharmaceutical drugs. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

17.
罗强  陈应华  修玉英 《应用化学》2001,18(6):504-506
聚氨酯乳液;聚醚多元醇;二羟甲基丙酸;单组分阴离子聚氨酯水乳液结构与性能  相似文献   

18.
毛竹屑与玉米淀粉共液化产物制备聚氨酯泡沫研究   总被引:2,自引:0,他引:2  
采用单因素试验设计,研究了液化剂组成、液比以及毛竹屑与淀粉的比例对液化产物理化性质、及所制备的聚氨酯泡沫材料的物理力学指标影响.结果显示当以50%乙二醇+50%碳酸亚乙酯混合物作为液化剂、添加相当于液化剂质量3%的浓硫酸为催化剂、在(150±5)℃(油浴)和常压条件下,液化150min,搅拌速度30r/min,取得本试验条件下最好的竹屑液化效果,液化产物中竹屑含量25%,残渣率3.96%,但该液化产物中天然聚合物碎片含量少,所制备的聚氨酯泡沫材料塌陷;竹屑与玉米淀粉共液化有效提高了液化产物中生物质的含量,但占液化剂质量25%竹屑+占液化剂质量125%玉米淀粉共液化产物粘度太高(8.85Pa.s);而20%竹屑+130%玉米淀粉的共液化产物与4,4′-二苯基甲烷二异氰酸酯以及各种助剂按异氰酸酯基/羟基摩尔比为1.1配合时,所制备的聚氨酯泡沫材料表观密度为33.6kg/m3、压缩强度118kPa、弹性模量6.91MPa,在周年生物降解试验中,该生物质基聚氨酯硬质泡沫失重率为12.63%.  相似文献   

19.
Green and renewable foaming poly(lactic acid) (PLA) represents one of the promising developments in PLA materials. This study is the first to use the lignin graft PLA copolymer (LG‐g‐PLA) to improve the foamability of PLA as a biobased nucleating agent. This agent was synthesized via ring‐opening polymerization of lignin and lactide. The effects of LG‐g‐PLA on cell nucleation induced by the crystallization, rheological behavior, and foamability of PLA were evaluated. Results indicated that LG‐g‐PLA can improve the crystallization rate and crystallinity of PLA, and play a significant nucleation role in the microcellular foam processing of PLA. LG‐g‐PLA improved the foam morphology of PLA, obtaining a reduced and uniform cell size as well as increased expansion ratio and cell density. With the addition of 3 wt% LG‐g‐PLA content, the PLA/LG‐g‐PLA foams increased the compressive strength 1.6 times than that of neat PLA foams. The improved foaming properties of PLA via a biobased nucleating agent show potential for the production and application of green biodegradable foams.  相似文献   

20.
 研究了聚苯乙烯大单体与乙酸乙烯酯的溶液聚合,结果表明,接枝效率随引发剂用量、聚合温度及小单体与大单体的投料比的增加而增加,随大单体的分子量增加而减少,而随单体浓度的变化呈现一最大值。共聚过程中大单体的转化率开始较小单体的增加快,后期变慢。用萃取法纯化的接枝共聚物经GPC、IR、1H-NMR及PGC等表征,并算得平均接枝数为4—7。透射电镜表明接枝共聚物中存在微观相分离。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号