首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Finding the maximum eigenvalue of a tensor is an important topic in tensor computation and multilinear algebra. Recently, for a tensor with nonnegative entries (which we refer it as a nonnegative tensor), efficient numerical schemes have been proposed to calculate its maximum eigenvalue based on a Perron–Frobenius-type theorem. In this paper, we consider a new class of tensors called essentially nonnegative tensors, which extends the concept of nonnegative tensors, and examine the maximum eigenvalue of an essentially nonnegative tensor using the polynomial optimization techniques. We first establish that finding the maximum eigenvalue of an essentially nonnegative symmetric tensor is equivalent to solving a sum of squares of polynomials (SOS) optimization problem, which, in its turn, can be equivalently rewritten as a semi-definite programming problem. Then, using this sum of squares programming problem, we also provide upper and lower estimates for the maximum eigenvalue of general symmetric tensors. These upper and lower estimates can be calculated in terms of the entries of the tensor. Numerical examples are also presented to illustrate the significance of the results.  相似文献   

2.
Finding the minimal H-eigenvalue of tensors is an important topic in tensor computation and numerical multilinear algebra. This paper is devoted to a sum-of-squares (SOS) algorithm for computing the minimal H-eigenvalues of tensors with some sign structures called extended essentially nonnegative tensors (EEN-tensors), which includes nonnegative tensors as a subclass. In the even-order symmetric case, we first discuss the positive semi-definiteness of EEN-tensors, and show that a positive semi-definite EEN-tensor is a nonnegative tensor or an M-tensor or the sum of a nonnegative tensor and an M-tensor, then we establish a checkable sufficient condition for the SOS decomposition of EEN-tensors. Finally, we present an efficient algorithm to compute the minimal H-eigenvalues of even-order symmetric EEN-tensors based on the SOS decomposition. Numerical experiments are given to show the efficiency of the proposed algorithm.  相似文献   

3.
In this paper, we propose a fast algorithm for computing the spectral radii of symmetric nonnegative tensors. In particular, by this proposed algorithm, we are able to obtain the spectral radii of weakly reducible symmetric nonnegative tensors without requiring the partition of the tensors. As we know, it is very costly to determine the partition for large‐sized weakly reducible tensors. Numerical results are reported to show that the proposed algorithm is efficient and also able to compute the spectral radii of large‐sized tensors. As an application, we present an algorithm for testing the positive definiteness of Z‐tensors. By this algorithm, it is guaranteed to determine the positive definiteness for any Z‐tensor.  相似文献   

4.
The problem of symmetric rank‐one approximation of symmetric tensors is important in independent components analysis, also known as blind source separation, as well as polynomial optimization. We derive several perturbative results that are relevant to the well‐posedness of recovering rank‐one structure from approximately‐rank‐one symmetric tensors. We also specialize the analysis of the shifted symmetric higher‐order power method, an algorithm for computing symmetric tensor eigenvectors, to approximately‐rank‐one symmetric tensors. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

5.
This paper studies tensor eigenvalue complementarity problems. Basic properties of standard and complementarity tensor eigenvalues are discussed. We formulate tensor eigenvalue complementarity problems as constrained polynomial optimization. When one tensor is strictly copositive, the complementarity eigenvalues can be computed by solving polynomial optimization with normalization by strict copositivity. When no tensor is strictly copositive, we formulate the tensor eigenvalue complementarity problem equivalently as polynomial optimization by a randomization process. The complementarity eigenvalues can be computed sequentially. The formulated polynomial optimization can be solved by Lasserre’s hierarchy of semidefinite relaxations. We show that it has finite convergence for generic tensors. Numerical experiments are presented to show the efficiency of proposed methods.  相似文献   

6.
In this paper, a successive supersymmetric rank‐1 decomposition of a real higher‐order supersymmetric tensor is considered. To obtain such a decomposition, we design a greedy method based on iteratively computing the best supersymmetric rank‐1 approximation of the residual tensors. We further show that a supersymmetric canonical decomposition could be obtained when the method is applied to an orthogonally diagonalizable supersymmetric tensor, and in particular, when the order is 2, this method generates the eigenvalue decomposition for symmetric matrices. Details of the algorithm designed and the numerical results are reported in this paper. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

7.
In the tensor completion problem, one seeks to estimate a low‐rank tensor based on a random sample of revealed entries. In terms of the required sample size, earlier work revealed a large gap between estimation with unbounded computational resources (using, for instance, tensor nuclear norm minimization) and polynomial‐time algorithms. Among the latter, the best statistical guarantees have been proved, for third‐order tensors, using the sixth level of the sum‐of‐squares (sos ) semidefinite programming hierarchy. However, the sos approach does not scale well to large problem instances. By contrast, spectral methods—based on unfolding or matricizing the tensor—are attractive for their low complexity, but have been believed to require a much larger sample size. This paper presents two main contributions. First, we propose a new method, based on unfolding, which outperforms naive ones for symmetric kth‐order tensors of rank r. For this result we make a study of singular space estimation for partially revealed matrices of large aspect ratio, which may be of independent interest. For third‐order tensors, our algorithm matches the sos method in terms of sample size (requiring about rd3/2 revealed entries), subject to a worse rank condition (rd3/4 rather than rd3/2). We complement this result with a different spectral algorithm for third‐order tensors in the overcomplete (rd) regime. Under a random model, this second approach succeeds in estimating tensors of rank drd3/2 from about rd3/2 revealed entries. © 2018 Wiley Periodicals, Inc.  相似文献   

8.
As computing power increases, many more problems in engineering and data analysis involve computation with tensors, or multi-way data arrays. Most applications involve computing a decomposition of a tensor into a linear combination of rank-1 tensors. Ideally, the decomposition involves a minimal number of terms, i.e. computation of the rank of the tensor. Tensor rank is not a straight-forward extension of matrix rank. A constructive proof based on an eigenvalue criterion is provided that shows when a 2?×?2?×?2 tensor over ? is rank-3 and when it is rank-2. The results are extended to show that n?×?n?×?2 tensors over ? have maximum possible rank n?+?k where k is the number of complex conjugate eigenvalue pairs of the matrices forming the two faces of the tensor cube.  相似文献   

9.
Based on the generalized characteristic polynomial introduced by J. Canny in Generalized characteristic polynomials [J. Symbolic Comput., 1990, 9(3): 241–250], it is immediate that for any m-order n-dimensional real tensor, the number of distinct H-eigenvalues is less than or equal to n(m?1) n?1. However, there is no known bounds on the maximal number of distinct Heigenvectors in general. We prove that for any m ? 2, an m-order 2-dimensional tensor A exists such that A has 2(m ? 1) distinct H-eigenpairs. We give examples of 4-order 2-dimensional tensors with six distinct H-eigenvalues as well as six distinct H-eigenvectors. We demonstrate the structure of eigenpairs for a higher order tensor is far more complicated than that of a matrix. Furthermore, we introduce a new class of weakly symmetric tensors, called p-symmetric tensors, and show under certain conditions, p-symmetry will effectively reduce the maximal number of distinct H-eigenvectors for a given two-dimensional tensor. Lastly, we provide a complete classification of the H-eigenvectors of a given 4-order 2-dimensional nonnegative p-symmetric tensor. Additionally, we give sufficient conditions which prevent a given 4-order 2-dimensional nonnegative irreducible weakly symmetric tensor from possessing six pairwise distinct H-eigenvectors.  相似文献   

10.
We introduce a new class of nonnegative tensors—strictly nonnegative tensors.A weakly irreducible nonnegative tensor is a strictly nonnegative tensor but not vice versa.We show that the spectral radius of a strictly nonnegative tensor is always positive.We give some necessary and su?cient conditions for the six wellconditional classes of nonnegative tensors,introduced in the literature,and a full relationship picture about strictly nonnegative tensors with these six classes of nonnegative tensors.We then establish global R-linear convergence of a power method for finding the spectral radius of a nonnegative tensor under the condition of weak irreducibility.We show that for a nonnegative tensor T,there always exists a partition of the index set such that every tensor induced by the partition is weakly irreducible;and the spectral radius of T can be obtained from those spectral radii of the induced tensors.In this way,we develop a convergent algorithm for finding the spectral radius of a general nonnegative tensor without any additional assumption.Some preliminary numerical results show the feasibility and effectiveness of the algorithm.  相似文献   

11.
This paper studies symmetric tensor decompositions. For symmetric tensors, there exist linear relations of recursive patterns among their entries. Such a relation can be represented by a polynomial, which is called a generating polynomial. The homogenization of a generating polynomial belongs to the apolar ideal of the tensor. A symmetric tensor decomposition can be determined by a set of generating polynomials, which can be represented by a matrix. We call it a generating matrix. Generally, a symmetric tensor decomposition can be determined by a generating matrix satisfying certain conditions. We characterize the sets of such generating matrices and investigate their properties (e.g., the existence, dimensions, nondefectiveness). Using these properties, we propose methods for computing symmetric tensor decompositions. Extensive examples are shown to demonstrate the efficiency of proposed methods.  相似文献   

12.
Consider the problem of computing the largest eigenvalue for nonnegative tensors. In this paper, we establish the Q-linear convergence of a power type algorithm for this problem under a weak irreducibility condition. Moreover, we present a convergent algorithm for calculating the largest eigenvalue for any nonnegative tensors.  相似文献   

13.
The real rectangular tensors arise from the strong ellipticity condition problem in solid mechanics and the entanglement problem in quantum physics. In this paper, we first study properties of l k,s -singular values of real rectangular tensors. Then, a necessary and sufficient condition for the positive definiteness of partially symmetric rectangular tensors is given. Furthermore, we show that the weak Perron-Frobenius theorem for nonnegative partially symmetric rectangular tensor keeps valid under some new conditions and we prove a maximum property for the largest l k,s -singular values of nonnegative partially symmetric rectangular tensor. Finally, we prove that the largest l k,s -singular value of nonnegative weakly irreducible partially symmetric rectangular tensor is still geometrically simple.  相似文献   

14.
The positive definiteness of elasticity tensors plays an important role in the elasticity theory.In this paper,we consider the bi-block symmetric tensors,which contain elasticity tensors as a subclass.First,we define the bi-block M-eigenvalue of a bi-block symmetric tensor,and show that a bi-block symmetric tensor is bi-block positive(semi)definite if and only if its smallest bi-block M-eigenvalue is(nonnegative)positive.Then,we discuss the distribution of bi-block M-eigenvalues,by which we get a sufficient condition for judging bi-block positive(semi)definiteness of the bi-block symmetric tensor involved.Particularly,we show that several classes of bi-block symmetric tensors are bi-block positive definite or bi-block positive semidefinite,including bi-block(strictly)diagonally dominant symmetric tensors and bi-block symmetric(B)B0-tensors.These give easily checkable sufficient conditions for judging bi-block positive(semi)definiteness of a bi-block symmetric tensor.As a byproduct,we also obtain two easily checkable sufficient conditions for the strong ellipticity of elasticity tensors.  相似文献   

15.
A symmetric tensor, which has a symmetric nonnegative decomposition, is called a completely positive tensor. In this paper, we characterize the completely positive tensor as a truncated moment sequence, and transform the problem of checking whether a tensor is completely positive to checking whether its corresponding truncated moment sequence admits a representing measure, then present a semidefinite algorithm to solve it. If a tensor is not completely positive, a certificate for it can be obtained; if it is completely positive, a nonnegative decomposition can be obtained.  相似文献   

16.
张量分析 (也称多重数值线性代数) 主要包括张量分解和张量特征值的理论和算法,多项式优化主要包括目标和约束均为多项式的一类优化问题的理论和算法. 主要介绍这两个研究领域中若干新的研究结果. 对张量分析部分,主要介绍非负张量H-特征值谱半径的一些性质及求解方法,还介绍非负张量最大 (小) Z-特征值的优化表示及其解法;对多项式优化部分,主要介绍带单位球约束或离散二分单位取值、目标函数为齐次多项式的优化问题及其推广形式的多项式优化问题和半定松弛解法. 最后对所介绍领域的发展趋势做了预测和展望.  相似文献   

17.
In this paper, we develop and enrich the theory of nonnegative tensors. We define the sign nonsingular tensors and establish the relationship between the combinatorial determinant and the permanent of nonnegative tensors. We generalize the results from doubly stochastic matrices to totally plane stochastic tensors and obtain a probabilistic algorithm for locating a positive diagonal in a nonnegative tensor under certain conditions. We form a normalization algorithm to convert some nonnegative tensors to plane stochastic tensors. We obtain a lower bound for the minimum of the axial N-index assignment problem by means of the set of plane stochastic tensors.  相似文献   

18.
Two new eigenvalue inclusion sets for tensors are established. It is proved that the new eigenvalue inclusion sets are tighter than that in Qi's paper “Eigenvalues of a real supersymmetric tensor”. As applications, upper bounds for the spectral radius of a nonnegative tensor are obtained, and it is proved that these upper bounds are sharper than that in Yang's paper “Further results for Perron–Frobenius theorem for nonnegative tensors”. And some sufficient conditions of the positive definiteness for an even‐order real supersymmetric tensor are given. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

19.
We study symmetric tensor spaces and cones arising from polynomial optimization and physical sciences.We prove a decomposition invariance theorem for linear operators over the symmetric tensor space,which leads to several other interesting properties in symmetric tensor spaces.We then consider the positive semidefiniteness of linear operators which deduces the convexity of the Frobenius norm function of a symmetric tensor.Furthermore,we characterize the symmetric positive semidefinite tensor(SDT)cone by employing the properties of linear operators,design some face structures of its dual cone,and analyze its relationship to many other tensor cones.In particular,we show that the cone is self-dual if and only if the polynomial is quadratic,give specific characterizations of tensors that are in the primal cone but not in the dual for higher order cases,and develop a complete relationship map among the tensor cones appeared in the literature.  相似文献   

20.
In this paper we study two solution methods for finding the largest eigenvalue (singular value) of general square (rectangular) nonnegative tensors. For a positive tensor, one can find the largest eigenvalue (singular value) based on the properties of the positive tensor and the power-type method. While for a general nonnegative tensor, we use a series of decreasing positive perturbations of the original tensor and repeatedly recall power-type method for finding the largest eigenvalue (singular value) of a positive tensor with an inexact strategy. We prove the convergence of the method for the general nonnegative tensor. Under a certain assumption, the computing complexity of the method is established. Motivated by the interior-point method for the convex optimization, we put forward a one-step inner iteration power-type method, whose convergence is also established under certain assumption. Additionally, by using embedding technique, we show the relationship between the singular values of the rectangular tensor and the eigenvalues of related square tensor, which suggests another way for finding the largest singular value of nonnegative rectangular tensor besides direct power-type method for this problem. Finally, numerical examples of our algorithms are reported, which demonstrate the convergence behaviors of our methods and show that the algorithms presented are promising.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号