首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 500 毫秒
1.
利用共价结合的方法在氧化石墨烯(GO)表面修饰聚乙烯亚胺(PEI),得到了稳定的GO-PEI复合物.透射电子显微镜和圆二色谱实验结果显示,对于人类胰岛淀粉样多肽(hIAPP)的纤维化聚集GO-PEI比GO有更强的抑制能力.结合Th T荧光和原子力显微镜实验结果发现,在hIAPP聚集过程的成核初期加入GO-PEI有最好的抑制效果,在纤维化过程的生长期加入GO-PEI能部分抑制hIAPP纤维的形成,但GO-PEI不能使成熟的hIAPP纤维解聚集.  相似文献   

2.
阿尔茨海默氏病(AD)和2型糖尿病(T2DM)是常见的由蛋白质错误折叠引起的疾病,作为与此二者相关的致病蛋白,淀粉样β蛋白(Aβ)和人胰岛淀粉样多肽(hIAPP)的交叉聚集行为暗示了AD和T2DM的相关性。然而,Aβ和hIAPP在体内的交叉聚集过程尚不明确。为了更好地模拟体内环境特征,即同时存在不同形式的淀粉样蛋白聚集体,且少量的聚集体附着在血管壁上会成为聚集过程的种子,本文以硫代黄素T荧光测定,原子力显微镜,圆二色光谱,石英晶体微天平以及MTT法作为研究手段,探究了Aβ和hIAPP在溶液和固体表面的成核与交叉成核聚集行为。结果表明,少量的Aβ40和hIAPP种子(单体浓度的1/50)即可显著改变异源聚集的聚集路径,形成具有不同形态且含有更多β-折叠结构的异源聚集体,导致更高的细胞毒性。溶液和固体表面上的结果均证明异源成核聚集效率低于同源聚集,且异源聚集的特征很大程度上取决于种子类型。此外,不同于溶液中所得结果,hIAPP种子在固体表面的交叉成核聚集效率显著高于Aβ40种子,证明了界面性质对交叉聚集过程的影响。这些结论对于理解淀粉样蛋白交叉聚集过程具有重要意义。  相似文献   

3.
焦勇  韩大雄  杨频 《中国科学B辑》2005,35(4):303-311
大脑中淀粉样β多肽(Aβ)的纤维化沉积是Alzheimer氏症(AD)的一个关键性病理事件. 体外实验发现, 近生理浓度的锌离子即有很强的诱导Aβ 聚集的能力. 铜离子在一定条件下能够强烈地抑制锌离子诱导的Aβ 聚集. 铜离子作为体内锌离子的潜在抑制剂引起了人们的关注. 本文通过分子模拟法研究了铜离子抑制Ab聚集的可能机理. 在单环模式中发现Y10残基有明显的促螺旋化作用, [Cu-H13(Nπ)-Y10(OH)]配合物形成了局部准3.010螺旋结构. 在多环模式中发现Q15和E11残基的侧链协同配位使体系能量大幅降低, 变构效应显著. 配合物[Cu-3N-Q15(O)- E11(O1)]和[Cu-H13(Np)-Y10(OH)]由于变构为准螺旋构象, 极可能以可溶形式存在于溶液中. 另外, 发现氢键作用是Ab 聚集的主要驱动力. 以上结果将有助于进一步加深对铜离子与AD致病机制之间关系的理解并制定相应的“抗淀粉样沉积”的治疗策略.  相似文献   

4.
阿尔兹海默氏病的主要病因之一,是病人大脑的海马区和皮质区中Аβ多肽异常聚集形成了老年脑斑.本工作通过质谱方法研究游离氨基酸存在下铜离子和Аβ多肽的相互作用,发现由于其侧链极性和强配位能力,天冬氨酸、谷氨酸、亮氨酸、酪氨酸、苏氨酸和组氨酸6种氨基酸能够在较低浓度下明显抑制铜离子和Аβ多肽的结合,由此推测游离氨基酸可能是一种新的与Аβ多肽异常聚集相关的微环境因素.  相似文献   

5.
贾卫平  焦勇  杨频 《化学学报》2007,65(14):1348-1352
以分子模拟方法研究了与Aβ肽相互作用中铜、锌两种金属离子竞争取代的可能机理. 结果表明, 锌离子不能竞争取代准螺旋配合物[Cu-H13(Nπ)-Y10(OH)], 不影响其聚集抑制作用; 配合物[Zn-H14(Nτ)-V12(CO)]和[Zn-H13(Nτ)-E11(CO)]中的锌离子能被铜离子所取代, 配合物构象无明显变化. 另外, 铜离子还能取代简单桥联模式[H13(Nτ)-Zn-H14(Nτ)]中的锌离子.  相似文献   

6.
基于铜离子对罗丹明B标记的多肽的荧光猝灭作用, 构建了一种用于铜离子检测的荧光传感器. 利用共振光散射分析、 紫外-可见吸收光谱、 荧光寿命测试和圆二色光谱研究了铜离子检测的传感机理, 发现铜离子的加入诱导多肽结构发生变化而使罗丹明B荧光团彼此靠近, 从而导致铜离子与多肽之间发生聚集诱导荧光猝灭. 实验结果表明, 该传感器检测铜离子的线性范围为5×10?4~1×10?2 μmol/L和0.1~7 μmol/L, 检出限为0.29 nmol/L, 且拥有良好的选择性, 能用于湖水样品中铜离子的检测.  相似文献   

7.
荧光染料硫黄素T常用于淀粉样纤维聚集过程的定性定量检测。虽然有研究表明,某些抑制淀粉样蛋白质聚集的小分子抑制剂会与硫黄素T相互作用,影响其测试结果。但硫黄素T如何影响淀粉样蛋白质的聚集成核动力学尚不清晰。本文以淀粉样β-蛋白质40 (Aβ40)为模型,系统研究了硫黄素T对Aβ40聚集成核的影响。研究发现:硫黄素T能够显著改变Aβ40的聚集成核动力学,且影响程度与硫黄素T的浓度密切相关。即在低浓度硫黄素T存在下,Aβ40成核速率的延迟时间先随着硫黄素T浓度的升高而缩短,后随着硫黄素T浓度的升高延迟时间反而延长。但延伸的速率却随硫黄素T浓度的升高而缓慢增大。另外,硫黄素T基本不会影响Aβ40的二级结构和纤维形态。同时,等温滴定微量热实验结果表明,硫黄素T结合Aβ40之间的主要作用力为疏水相互作用。据此,本研究提出硫黄素T对Aβ40聚集成核动力学的双重影响机理。这些结果有助于进一步了解硫黄素T与淀粉样蛋白质的作用特点,为今后硫黄素T在Aβ40聚集成核动力学实验中的使用提供参考。  相似文献   

8.
荧光染料硫黄素T常用于淀粉样纤维聚集过程的定性定量检测。虽然有研究表明,某些抑制淀粉样蛋白质聚集的小分子抑制剂会与硫黄素T相互作用,影响其测试结果。但硫黄素T如何影响淀粉样蛋白质的聚集成核动力学尚不清晰。本文以淀粉样β-蛋白质40(Aβ40)为模型,系统研究了硫黄素T对Aβ40聚集成核的影响。研究发现:硫黄素T能够显著改变Aβ40的聚集成核动力学,且影响程度与硫黄素T的浓度密切相关。即在低浓度硫黄素T存在下,Aβ40成核速率的延迟时间先随着硫黄素T浓度的升高而缩短,后随着硫黄素T浓度的升高延迟时间反而延长。但延伸的速率却随硫黄素T浓度的升高而缓慢增大。另外,硫黄素T基本不会影响Aβ40的二级结构和纤维形态。同时,等温滴定微量热实验结果表明,硫黄素T结合Aβ40之间的主要作用力为疏水相互作用。据此,本研究提出硫黄素T对Aβ40聚集成核动力学的双重影响机理。这些结果有助于进一步了解硫黄素T与淀粉样蛋白质的作用特点,为今后硫黄素T在Aβ40聚集成核动力学实验中的使用提供参考。  相似文献   

9.
阿尔茨海默氏病(AD)和2型糖尿病(T2DM)是常见的由蛋白质错误折叠引起的疾病,作为与此二者相关的致病蛋白,淀粉样β蛋白(Aβ)和人胰岛淀粉样多肽(h IAPP)的交叉聚集行为暗示了AD和T2DM的相关性。然而,Aβ和h IAPP在体内的交叉聚集过程尚不明确。为了更好地模拟体内环境特征,即同时存在不同形式的淀粉样蛋白聚集体,且少量的聚集体附着在血管壁上会成为聚集过程的种子,本文以硫代黄素T荧光测定,原子力显微镜,圆二色光谱,石英晶体微天平以及MTT法作为研究手段,探究了Aβ和h IAPP在溶液和固体表面的成核与交叉成核聚集行为。结果表明,少量的Aβ40和h IAPP种子(单体浓度的1/50)即可显著改变异源聚集的聚集路径,形成具有不同形态且含有更多β-折叠结构的异源聚集体,导致更高的细胞毒性。溶液和固体表面上的结果均证明异源成核聚集效率低于同源聚集,且异源聚集的特征很大程度上取决于种子类型。此外,不同于溶液中所得结果,h IAPP种子在固体表面的交叉成核聚集效率显著高于Aβ40种子,证明了界面性质对交叉聚集过程的影响。这些结论对于理解淀粉样蛋白交叉聚集过程具有重要意义。  相似文献   

10.
研究了表没食子儿茶素没食子酸酯(EGCG)在不同pH值(5. 0,6. 0和7. 4)下对β-淀粉样蛋白(Aβ_(42))聚集的抑制作用.结果表明,虽然在上述pH范围内EGCG均可抑制Aβ_(42)聚集和细胞毒性,但不同pH值下EGCG与Aβ_(42)的作用方式不同.当pH=5. 0时,Aβ_(42)可在数秒内聚集,EGCG-Aβ_(42)相互作用最弱,因此聚集前期EGCG不能有效抑制Aβ_(42)纤维化;培养24 h时,产生35. 1%的β-折叠结构和50%的硫黄素T(Th T)荧光;但此pH值下EGCG可通过降低Aβ_(42)表面疏水性使聚集体重塑,因此在聚集后期可阻碍Aβ_(42)纤维化.当pH=6. 0时,Aβ_(42)聚集速度降低,EGCG-Aβ_(42)相互作用增强,EGCG对Aβ_(42)纤维化的抑制作用较pH=5. 0时更加显著,几乎可完全抑制Aβ_(42)向β-折叠构象转换和Th T荧光的产生.当pH=7. 4时,Aβ_(42)聚集速度最慢,EGCG与Aβ_(42)结合作用最强,因而能够增加Aβ_(42)稳定性和聚集延滞期,显著抑制Aβ_(42)纤维化.  相似文献   

11.
The pathogenesis of type II diabetes is associated with the aggregation of the 37-residue human islet amyloid polypeptide (hIAPP) into cytotoxic beta sheet aggregates and fibrils. We have recently shown that introduction of two N-methyl rests in the beta sheet- and amyloid-core-containing sequence hIAPP(22-27), or NFGAIL converted this amyloidogenic and cytotoxic sequence into nonamyloidogenic and noncytotoxic NF(N-Me)GA(N-Me)IL. Here, we show that NF(N-Me)GA(N-Me)IL is able to bind with high-affinity full-length hIAPP and to inhibit its fibrillogenesis. NF(N-Me)GA(N-Me)IL also inhibits hIAPP-mediated apoptotic beta cell death. By contrast, unmodified NFGAIL does not inhibit hIAPP amyloidogenesis and cytotoxicity, suggesting that N-methylation conferred on NFGAIL the properties of NF(N-Me)GA(N-Me)IL. These results support the concept that rational N-methylation of hIAPP amyloid-core sequences may be a valuable strategy to design pancreatic-amyloid diagnostics and therapeutics for type II diabetes.  相似文献   

12.
Type‐2 diabetes (T2D) is considered to be a potential threat on a global level. Recently, T2D has been listed as a misfolding disease, such as Alzheimer's and Parkinson's diseases. Human islet amyloid polypeptide (hIAPP) is a molecule cosecreted in pancreatic β cells and represents the main constituent of an aggregated amyloid found in individuals affected by T2D. The trace‐element serum level is significantly influenced during the development of diabetes. In particular, the dys‐homeostasis of Cu2+ ions may adversely affect the course of the disease. Conflicting results have been reported on the protective role played by complex species formed by Cu2+ ions with hIAPP or its peptide fragments in vitro. The histidine (His) residue at position 18 represents the main binding site for the metal ion, but contrasting results have been reported on other residues involved in metal‐ion coordination, in particular those toward the N or C terminus. Sequences that encompass regions 17–29 and 14–22 were used to discriminate between the two models of the hIAPP coordination mode. Due to poor solubility in water, poly(ethylene glycol) (PEG) derivatives were synthesized. A peptide fragment that encompasses the 17–29 region of rat amylin (rIAPP) in which the arginine residue at position 18 was substituted by a histidine residue was also obtained to assess that the PEG moiety does not alter the peptide secondary structure. The complex species formed by Cu2+ ions with Ac‐PEG‐hIAPP(17–29)‐NH2, Ac‐rIAPP(17–29)R18H‐NH2, and Ac‐PEG‐hIAPP(14–22)‐NH2 were studied by using potentiometric titrations coupled with spectroscopic methods (UV/Vis, circular dichroism, and EPR). The combined thermodynamic and spectroscopic approach allowed us to demonstrate that hIAPP is able to bind Cu2+ ions starting from the His18 imidazole nitrogen atom toward the N‐terminus domain. The stability constants of copper(II) complexes with Ac‐PEG‐hIAPP(14–22)‐NH2 were used to simulate the different experimental conditions under which aggregate formation and oxidative stress of hIAPP has been reported. Speciation unveils: 1) the protective role played by increased amounts of Cu2+ ions on the hIAPP fibrillary aggregation, 2) the effect of adventitious trace amounts of Cu2+ ions present in phosphate‐buffered saline (PBS), and 3) a reducing fluorogenic probe on H2O2 production attributed to the polypeptide alone.  相似文献   

13.
A wealth of epidemiological evidence indicates a strong link between type 2 diabetes (T2D) and Alzheimer's disease (AD). The fiber deposition with cross‐β‐sheet structure formed by self‐aggregation and misfolding of amyloidogenic peptides is a common hallmark of both diseases. For the patients with T2D, the fibrils are mainly found in the islets of Langerhans that results from the accumulation of human islet amyloid polypeptide (hIAPP). The major component of aggregates located in the brain of AD patients is amyloid‐β (Aβ). Many biophysical and physiological properties are shared by hIAPP and Aβ, and both peptides show similar cytotoxic mechanisms. Therefore, it is meaningful to investigate the possible cross‐interactions of hIAPP and Aβ in both diseases. In this article, the segment 25–35 of Aβ was selected because Aβ25–35 was a core region in the process of amyloid formation and showed similar aggregation tendency and toxicity with full‐length Aβ. The electrospray ionization‐ion mobility‐mass spectrometry analysis and thioflavin T fluorescence kinetic analysis combined with transmission electron microscopy were used to explore the effects of the coexistence of Aβ25–35 and hIAPP on the self‐aggregation of both peptides and whether there was co‐assembly in fibrillation. The results indicated that the aggregation of hIAPP and Aβ25–35 had two nucleation stages in the binary mixtures. hIAPP and Aβ25–35 had a high binding affinity and a series of hetero‐oligomers formed in the mixtures of hIAPP and Aβ25–35 in the early stage. The cross‐reaction between hIAPP monomers and Aβ25–35 monomers as well as a little of oligomers during primary nucleation stage could accelerate the aggregation of Aβ25–35. However, owing to the obvious difference in aggregation ability between hIAPP and Aβ25–35, this cross‐interaction had no significant impact on the self‐assembly of hIAPP. Our study may offer a better understanding for exploring the molecular mechanism of the association between AD and T2D observed in clinical and epidemiological studies and developing therapeutic strategies against amyloid diseases.  相似文献   

14.
Alpha-sheet is believed to be a significant structural component, formed in the fibrillation process of the amyloid peptide. However, the knowledge about the role of α-sheet played in the amyloidosis and toxicity is lack. In this work, we modified a short peptide derived from the core region of human islet amyloid polypetide(hIAPP, hIAPP18-27) with an alternating D-amino acid replacement and investigated the effects of the L/D alternating peptide on the fibrillar aggregation and the membrane damage of hIAPP using NMR, ThT fluorescence assay, circular dichroism(CD), transmission electron microscopy(TEM) and leakage assay, and compared the results with those of hIAPP18-27without D-amino acid replacement. We show that the short peptide with alternating L- and D-amino acids forms an α-sheet structure and is more potent in promoting the fibrillation of hIAPP and reducing the ability of hIAPP to disrupt the membrane composed of POPG and POPC[1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-(1'-rac-glycerol) and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine] 1:4 lipids than the short peptide with all L-amino acids in a random coil structure. The higher potency of the D/L alternating peptide in these activities is attributed to its ability to induce the α-sheet-like structure in the core region of hIAPP and block the interaction of hIAPP with the membrane more effectively.  相似文献   

15.
Understanding of the structural changes during their aggregation and interaction is a prerequisite for establishing the precise clinical relevance of human islet amyloid polypeptide (hIAPP) (involved in Type-II Diabetes Mellitus) in the treatment of Alzheimer's disease stemmed from beta-amyloid (Aβ). Herein, we show that the steady-state emission spectra obtained from photoluminescence (PL) simultaneously capture both the tyrosine derivative (tyrosinate) and the structure-specific intrinsic fluorescence during the aggregation of Aβ and hIAPP. We observe multiple peaks in the emission spectra which exist for structure-specific intrinsic fluorescence, and use the second derivative UV-Vis spectra and the shift in the tyrosine peak as a quantitative measure of the dissimilitude in the electronic states and the fibril growth. We further applied these techniques to detect the static electric field (0, 40, 120, 200 V/cm) induced promotion and inhibition of fibrillation in Aβ, hIAPP and their electric field dependent role in the fibrillation of Aβ : hIAPP(1 : 1). The results were corroborated by field-emission scanning electron microscopy (FESEM), and the determinations of secondary structures by Fourier transform infrared spectroscopy (FTIR). The results indicate that the emission spectrum can be used as a sensor to detect the presence of fibrils; hence for screening potential inhibitors of amyloid fibrillation.  相似文献   

16.
The conformation change picture of human islet amyloid polypeptide (hIAPP) is outlined using molecular dynamics simulation, and the structural influences of L16Q, S20G, and L16Q‐S20G mutations on the conformation of hIAPP are analyzed. Particularly, the conformational changes of the amyloidogenic‐related regions of residues 15–17 and 20–29 are emphasized. Our studies find that, for WT hIAPP, residues 15–17 always maintain a stable α‐helix structure, residues 20–25 structurally fluctuate between turn and 5‐helix, and residues 26–29 mainly adopt coil and bend structures. The hydrogen bonds between the polar groups of hIAPP, long‐rang van der Waals forces between the residues, and hydrophobic interactions between the residues of hIAPP are important driving forces to maintain the secondary structure of hIAPP. The replacement of leucine16 by glutamine stabilizes the helix structure of residues 15–17 and 20–23 of hIAPP monomer, and the structure of residues 24–29 fluctuates between helix and turn. The relatively stable helix structures of residues 15–17 and 20–29 are supposed to be beneficial for L16Q hIAPP to resist the aggregation as observed in the experiment. The substitution of serine20 by glycine drives residues 15–17 and 20–29 of hIAPP to transform from helix structure to β‐strands or coil structures with higher extension and flexibility, which may promote the aggregation of hIAPP as the experiments reported. These results are significant to understand the aggregation mechanism of hIAPP monomer into the dimer, trimer, oligomers and fibrils associated with the type 2 diabetes at the atomic level.  相似文献   

17.
Human islet amyloid polypeptide (hIAPP) forms cytotoxic fibrils in type-2 diabetes and insulin is known to inhibit formation of these aggregates. In this study, a series of insulin-based inhibitors were synthesized and assessed for their ability to slow aggregation and impact hIAPP-induced membrane damage. Computational studies were employed to examine the underlying mechanism of inhibition. Overall, all compounds were able to slow aggregation at sufficiently high concentrations (10× molar excess); however, only two peptides showed any inhibitory capability at the 1:1 molar ratio (EALYLV and VEALYLV). The results of density functional calculations suggest this is due to the strength of a salt bridge formed with the Arg11 side chain of hIAPP and the inhibitors' ability to span from the Arg11 to past the Phe15 residue of hIAPP, blocking one of the principal amyloidogenic regions of the molecule. Unexpectedly, slowing fibrillogenesis actually increased damage to lipid membranes, suggesting that the aggregation process itself, rather than the fibrilized peptide, may be the cause of cytotoxicity in vivo.  相似文献   

18.
Type 2 diabetes mellitus (T2Dm) is a neurodegenerative disease, which occurs due to the self-association of human islet amyloid polypeptide (hIAPP), also known as human amylin. It was reported experimentally that choline-O-sulfate (COS), a small organic molecule having a tertiary amino group and sulfate group, can prevent the aggregation of human amylin without providing the mechanism of the action of COS in the inhibition process. In this work, we investigate the influence of COS on the full-length hIAPP peptide by performing 500 ns classical molecular dynamics simulations. From pure water simulation (without COS), we have identified the residues 11–20 and 23–36 that mainly participate in the fibril formation, but in the presence of 1.07 M COS these residues become totally free of β-sheet conformation. Our results also show that the sulfate oxygen of COS directly interacts with the peptide backbone, which leads to the local disruption of peptide–peptide interaction. Moreover, the presence of favorable peptide-COS vdW interaction energy and high coordination number of COS molecules in the first solvation shell of the peptide indicates the hydrophobic solvation of the peptide residues by COS molecules, which also play a crucial role in the prevention of β-sheet formation. Finally, from the potential of mean force (PMFs) calculations, we observe that the free energy between two peptides is more negative in the absence of COS and with increasing concentration of COS, it becomes unfavorable significantly indicating that the peptide dimer formation is most stable in pure water, which becomes less favorable in the presence of COS. © 2019 Wiley Periodicals, Inc.  相似文献   

19.
In situ and real-time characterization of protein secondary structures at interfaces is important in biological and bioengineering sciences, yet remains technically challenging. In this study, we used chiral sum frequency generation (SFG) spectroscopy to establish a set of vibrational optical markers for characterizing protein secondary structures at interfaces. We discovered that the N-H stretches along the peptide backbones of α-helices can be detected in chiral SFG spectra. We further observed that the chiral vibrational signatures of the N-H stretch together with the peptide amide I are unique to α-helix, β-sheet, and random coil at interfaces. Using these chiral vibrational signatures, we studied the aggregation of human islet amyloid polypeptide (hIAPP), which is implicated in type II diabetes. We observed in situ and in real time the misfolding of hIAPP from random coils to α-helices and then β-sheets upon interaction with a lipid-water interface. Our findings show that chiral SFG spectroscopy is a powerful tool to follow changes in protein conformations at interfaces and identify interfacial protein secondary structures that elude conventional techniques.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号