首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
A graft copolymerization was performed using free radical initiating process to prepare the poly(methyl acrylate) grafted copolymer from the tapioca cellulose. The desired material is poly(hydroxamic acid) ligand, which is synthesized from poly(methyl acrylate) grafted cellulose using hydroximation reaction. The tapioca cellulose, grafted cellulose and poly(hydroxamic acid) ligand were characterized by Infrared Spectroscopy and Field Emission Scanning Electron Microscope. The adsorption capacity with copper was found to be good, 210 mg g?1 with a faster adsorption rate (t1/2 = 10.5 min). The adsorption capacities for other heavy metal ions were also found to be strong such as Fe3+, Cr3+, Co3+ and Ni2+ were 191, 182, 202 and 173 mg g?1, respectively at pH 6. To predict the adsorption behavior, the heavy metal ions sorption onto ligand were well-fitted with the Langmuir isotherm model (R2 > 0.99), which suggest that the cellulose-based adsorbent i.e., poly(hydroxamic acid) ligand surface is homogenous and monolayer. The reusability was checked by the sorption/desorption process for six cycles and the sorption and extraction efficiency in each cycle was determined. This new adsorbent can be reused in many cycles without any significant loss in its original removal performances.  相似文献   

2.
Radiation-induced graft polymerization of glycidyl methacrylate (GMA) onto non-woven polyethylene (NWPE) fabric was achieved under normal pressure and air atmospheric conditions, without using unique apparatus such as glass ampoules or vacuum lines. To attain graft polymerization under normal pressure and air atmospheric conditions, the effects of the pre-irradiation dose, pre-irradiation atmosphere, pre-irradiation temperature, de-aeration of GMA-emulsion, grafting atmosphere in a reactor, and dissolved oxygen (DO) concentration in GMA-emulsion on the degree of grafting (Dg) were investigated in detail. It was found that the DO concentration had the strongest influence, the pre-irradiation dose, de-aeration of emulsion and grafting atmosphere had a relatively strong impact, and the pre-irradiation atmosphere and pre-irradiation temperature had the least effect on Dg. The optimum DO concentration before grafting was 2.0 mg/L or less. When a polyethylene bottle was used as a reactor instead of a glass ampoule, graft polymerization under normal pressure and air atmospheric conditions could be achieved under the following conditions; the pre-irradiation dose was more than 50 kGy, the volume ratio of GMA-emulsion to air was 50:1 or less, and the DO concentration in GMA-emulsion during grafting was below 2.0 mg/L. Under these grafting conditions, Dg was controlled within a range of up to 362%. The prepared GMA–grafted NWPE (GMA–g-NWPE) fabric was modified with a phosphoric acid to obtain an adsorbent for heavy metal ions. In the column-mode adsorption tests of Pb(II), the adsorption performance of the produced phosphorylated GMA–g-NWPE fabric (fibrous metal adsorbent) was not essentially dependent on the flow rate of the feed. The breakthrough points of 200, 500, and 1000 h?1 in space velocity were 483, 477 and 462 bed volumes, and the breakthrough capacities of the three flow rates were 1.16, 1.15 and 1.16 mmol-Pb(II)/g-adsorbent.  相似文献   

3.
Graft copolymer hydrogels and semi-interpenetrating networks (s-IPN) of acryloyl-l-proline methyl ester (A-ProOMe) and poly (acrylic acid) (PAAc) were synthesized in methanol solutions, by ionizing radiation (γ rays from a Co60 source at room temperature). These systems are thermo and pH-sensitive and the pH sensitivity increases from acidic to basic solutions. The Lower Critical Solution Temperature (LCST), due to presence of poly (acryloyl-l-proline methyl ester) (PA-ProOMe) has been found between 18 and 20 °C and an unexpected Upper Critical Solution Temperature (UCST) due to poly acrylic acid (PAAc) has been found between 21 and 22 °C. Preliminary studies on the immobilization of Cu2+ for both hydrogels were done at several pH values at room temperature. Other techniques employed to characterize the comb type hydrogels and sIPN included scanning electronic microscopy (SEM) and infrared (FTIR-ATR).  相似文献   

4.
Volatile organic compounds (VOCs) are growing pollutants now that cause the serious environmental pollution and threaten human health. The functionalized ordered mesoporous silica (FOMS) has attracted considerable attention in adsorbing VOCs. In this paper, the molecular dynamics simulation was used to simulate the adsorption performance of FOMS on VOCs (acetone, ethyl acetate and toluene). After simulating different pore sizes (2 nm, 3 nm and 4 nm) adsorption performances of ordered mesoporous silica (OMS) on VOCs, OMS with a pore size of 4 nm was selected to further study the influence of functional groups (vinyl, methyl, and phenyl). The following law was obtained: the saturated adsorption capacities of vinyl-functionalized OMS (V-FOMS) to acetone, ethyl acetate and toluene were 3.045 mmol.g?1, 2.568 mmol.g?1 and 1.976 mmol.g?1 respectively; the saturated adsorption capacities of methyl-functionalized OMS (M-FOMS) to acetone, ethyl acetate and toluene were 2.798 mmol.g?1, 2.312 mmol.g?1 and 1.698 mmol.g?1 respectively; the saturated adsorption capacities of phenyl-functionalized OMS (P-FOMS) to acetone, ethyl acetate and toluene were 2.124 mmol.g?1, 1.941 mmol.g?1 and 1.539 mmol.g?1 respectively. These results show that the adsorption ability of FOMS for different adsorbates follows the sequence of acetone > ethyl acetate > toluene. Furthermore, the interaction between functional groups (vinyl, methyl and phenyl) in FOMS and VOCs was explored. It is found that the interaction between different functional groups and adsorbates is different (interaction energy effect). This interaction energy effect promotes FOMS to better adsorb VOCs. This work would provide fundamental understanding and guidance for the development of novel adsorption materials for the adsorption of VOCs.  相似文献   

5.
Aggregation of several chemicals from biomass: furfural derived compounds (furfural, 5-methylfurfural, furfuryl alcohol and tetrahydrofurfuryl alcohol), lactate derived compounds (methyl lactate, ethyl lactate and butyl lactate), acrylate derived compound (methyl acrylate) and levulinate compounds (methyl levulinate, ethyl levulinate and butyl levulinate) in aqueous solution has been characterised at T = 298.15 K through density, ρ, speed of sound, u, and isentropic compressibilities, κS, measurements. In addition the standard Gibbs free energies of aggregation have been also calculated. Furthermore, in order to deepen insight the behaviour of these chemicals in aqueous solution, the solubility of these compounds has been measured at T = 298.15 K.  相似文献   

6.
The Taylor dispersion technique has been used for measuring mutual diffusion coefficients of l-histidine methyl ester as its dihydrochloride at T = 298.15 K and finite concentrations from (0.001 to 0.100) mol · dm−3. On the basis of experimental mutual diffusion coefficients, the hydrodynamic radii, Rh, the diffusion coefficient at infinite dilution D0 and the dependence of thermodynamic factors, FT, on the concentration, have been estimated using the Onsager–Fuoss equation. Further insight on the diffusion has been obtained from 1H and 13C NMR spectroscopy and DFT calculations, which suggest that the l-histidine methyl ester is present as its dication in acidic solution in a fully extended conformation, with considerable charge delocalization over the imidazolium ring. These experimental and computational results allow us to have a better understanding of the thermodynamic and kinetic behavior of this amino acid derivative in aqueous solutions.  相似文献   

7.
Graft polymerization of glycidyl methacrylate (GMA) onto polyethylene fiber was carried out in emulsion solution obtained by dissolving GMA in water with sodium n-dodecyl sulfate (SDS) as a surfactant. GMA micelles diameter was 415 nm at 5% GMA with 4% SDS and increased up to 1840 nm at 10% GMA with 12% SDS. Degree of grafting (Dg) which was estimated by the weight gain after grafting increased with the increment of GMA concentration in the range 2 to 8% and slightly reduced at 10% GMA. The increment in SDS concentration from 4% to 16% at 5% GMA reduced Dg from 120% to 18%. In emulsion graft polymerization, Dg was affected by covered area by GMA/SDS micelles on the fiber.  相似文献   

8.
Synthesis of arsenic (As) adsorbents in pilot scale was carried out with a synthesizing apparatus by radiation-induced graft polymerization of 2-hydroxyethyl methacrylate phosphoric acid monomer (PA), which consists of phosphoric acid mono- (50%) and di- (50%) ethyl methacrylate esters onto a nonwoven cotton fabric (NCF), and following chemical modification by contact with a zirconium (Zr) solution. The apparatus which was equipped with reaction tanks, a washing tank and a pump can produce up to 0.3 m×14 m size of the As(V) adsorbent in one reaction. A degree of grafting of 150% was obtained at an irradiation dose of 20 kGy with 5% of PA solution mixed with deionized water for 1 h at 40 °C. Finally, after Zr(IV) was loaded onto a NCF with 5 mmol/L of Zr(IV) solution, the graft adsorbent for the removal of As(V) was achieved in pilot-scale. The adsorbent which was synthesized in pilot scale was evaluated in batch mode adsorption with 1 ppm (mg/l) of As(V) solution for 2 h at room temperature. As a result, the adsorption capacity for As(V) was 0.02 mmol/g-adsorbent.  相似文献   

9.
Poly(hydroxamic acid) ligand was synthesized using ester functionalities of cellulose‐graft‐poly(methyl acrylate) copolymer, and products are characterized by Fourier transform infrared spectroscopy, field emission scanning electron microscopy, high‐resolution transmission electron microscopy, and X‐ray photoelectron spectroscopy analysis. The poly(hydroxamic acid) ligand was utilized for the sensing and removal of transition metal ions form aqueous solutions. The solution pH is found a key factor for the optical detection of metal ions, and the reflectance spectra of the [Cu‐ligand]n+ complex were observed to be the highest absorbance 99.5% at pH 6. With the increase of Cu2+ ion concentration, the reflectance spectra were increased, and a broad peak at 705 nm indicated that the charge transfer (π‐π transition) complex was formed. The adsorption capacity with copper was found to be superior, 320 mg g?1, and adsorption capacities for other transition metal ions were also found to be good such as Fe3+, Mn2+, Co3+, Cr3+, Ni2+, and Zn2+ were 255, 260, 300, 280, 233, and 223 mg g?1, respectively, at pH 6. The experimental data show that all metal ions fitted well with the pseudo‐second‐order rate equation. The sorption results of the transition metal ions onto ligand were well fitted with Langmuir isotherm model (R2 > 0.98), which implies the homogenous and monolayer character of poly(hydroxamic acid) ligand surface. Eleven cycles sorption/desorption process were applied to verify the reusability of this adsorbent. The investigation of sorption and extraction efficiency in each cycle indicated that this new type of adsorbent can be recycled in many cycles with no significant loss in its original detection and removal capability. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

10.
Cellulose microsphere (CMS) adsorbent was prepared by radiation-induced grafting of dimethylaminoethyl methacrylate (DMAEMA) onto CMS followed by a protonation process. The FTIR spectra analysis proved that PDMAEMA was grafted successfully onto CMS. The adsorption of Cr(VI) onto the resulting adsorbent was very fast, the equilibrium adsorption could be achieved within 15 min. The adsorption capacity strongly depended on the pH of the solution, which was attributed to the change of both the existed forms of Cr(VI) and the tertiary-ammonium group of PDMAEMA grafted CMS with the pH. A maximum Cr(VI) uptake (ca. 78 mg g?1) was obtained as the pH was in the range of 3.0–6.0. However, even in strong acid media (pH 1.3), the adsorbents still showed a Cr(VI) uptake of 30 mg g?1. The adsorption behavior of the resultant absorbent could be described with the Langmuir mode. This adsorbent has potential application for removing heavy metal ion pollutants (e.g. Cr(VI)) from wastewater.  相似文献   

11.
Molybdic acid (H2MoO4, MA) doped polyaniline (PANI) micro/nanostructures were prepared by a self-assembly process in the presence of ammonium persulfate ((NH4)2S2O8, APS) as the oxidant. The morphology of PANI-MA changed from nanofibers or nanotubes (~160 nm in diameter) to co-existence of nanofibers and microspheres (~3 μm in diameter) and that accompanied an enhancement of the conductivity from 5.42 × 10?3 S cm?1 to 2.8 × 10?1 S cm?1as the molar ratio of MA to aniline varied from 0.01 to 1.5. With increasing the polymerization time, moreover, the pH value of the reaction solution not only decreased due to sulfuric acid produced during the course of the polymerization, but also accompanied a change in morphology from microspheres to nanofibers. All above-mentioned observations could be interpreted by spherical and cylindrical micelle composed of MA as the “soft-template” in forming the micro/nanostructures.  相似文献   

12.
Anthroneamine derivatives 13 (H2O:DMSO; 9:1, HEPES buffer, pH 7.0 ± 0.1) undergo highly selective fluorescence quenching with Hg2+. The observed linear fluorescence intensity change allows the quantitative detection of Hg2+ between 200 nM/40 ppb—12 μM/2.4 ppm even in the presence of interfering metal ions viz. Na+, K+, Mg2+, Ca2+, Ba2+, Cr3+, Fe2+, Co2+, Ni2+, Cu2+, Zn2+, Ag+, Cd2+, Pb2+. Probes 13 and their Hg2+ complexes also show the broad pH resistance for their practical applicability.  相似文献   

13.
Use of activated carbon (AC) prepared from rice husk and treated with anionic surfactant is investigated to eliminate cationic dye crystal violet (CV) using modelled dye solution. AC modified with anionic surfactant sodium lauryl sulfate (ACSLS) and other two surfactant namely sodium dodecyl sulfonate and hexadecyl trimethyl ammonium bromide were used for the analysis. Optimum ACSLS was analyzed and characterized using BET, XRD, SEM accompanied with XEDS, FTIR, HR-TEM and zeta potential, which confirms the sorption of CV onto ACSLS. Influence of pH, dose of adsorbent, concentration of initial dye, contact time, additive salts as well as actual water samples were investigated. Presence of NH4+, Ca2+, Mg2+, Na2+, Ca2+ and K+ cations in dye solution were having negligible (less than 4 %) influence on dye removal capacity. Study of mass transfer parameters revealed intra particle diffusion and film diffusion both played their part, whereas other kinetic studies has shown that experimental data fitted best with Pseudo 2nd order rate. Isotherm studies accompanied with error analysis revealed that Langmuir isotherm controls the adsorption equilibrium with highest capacity of CV adsorption with optimum operating conditions as pH = 6, temperature = 318 K, adsorbent dose = 100 mg/L and dye concentration = 30–60 mg/L. Study of thermodynamics and temperature analysis have shown that the sorption reaction was favourable and spontaneous with rise in temperature and endothermic in nature. Column studies are reported for varying rate of flow, depth of bed and dye concentrations along with analysis of column experimental data with various models like Yoon-Nelson, Thomas, Bohart-Adam and Clark model. Reusability (no. of cycles) of used adsorbent was studied using regeneration experiments. Analysis inferred that AC modified using surfactants can be a useful technique for enhanced adsorption capacity of dyes from aqueous solution and not much work has been reported on use of anionic surfactant modified AC for dye removal process.  相似文献   

14.
A fibrous adsorbent for Hg ions was synthesized by radiation-induced emulsion graft polymerization of glycidyl methacrylate (GMA) onto a nonwoven cotton fabric and subsequent chemical modification. The optimal pre-irradiation dose for initiation of the graft polymerization of GMA, which minimized the effects of radiation damage on the mechanical strength of the nonwoven cotton fabric, was found to be 10 kGy. The GMA-grafted nonwoven cotton fabric was subsequently modified with ethylenediamine (EDA) or diethylenetriamine (DETA) to obtain a Hg adsorbent. The resulting amine-type adsorbents were evaluated for batch and continuous adsorption of Hg. In batch adsorption, the distribution coefficients of Hg reached 1.9×105 and 1.0×105 for EDA- and DETA-type adsorbents, respectively. A column packed with EDA-type adsorbent removed Hg from 1.8 ppm Hg solution at a space velocity of 100 h?1, which corresponds to 16,000 times the volume of the packed adsorbent. The adsorbed Hg on the EDA-type adsorbent could be completely eluted by 1 M HCl solution. A microbial oxidative degradation test revealed that the EDA-type adsorbent is biodegradable.  相似文献   

15.
A composite electrode of Ni-ferrite/TiOx/Si(111) was synthesized by grafting Ni2+Fe2+Fe3+–LDH–TiCl3 (LDH: Layered Double Hydroxides) on n-Si(111) surface and calcined under 1100 °C. Photoelectric research results indicated that the electrode had good photovoltaic effects in an electrolyte solution containing 7.6 M HI and 0.05 M I2, while platinum plate was used as counter-electrode. The observed photo-voltages (Upv) and photocurrent densities (jpc) of the electrode were at ?0.75 V and 5.35 mA/cm2, respectively. Compared with electrodes of oxidized n-Si(111) crystal and n-Si(111) wafer covered by Ni-ferrites, jpc of the electrode Ni-ferrite/TiOx/Si(111) was increased greatly.  相似文献   

16.
Density, ρ, speed of sound, u, and refractive index, nD, at 298.15 K and atmospheric pressure have been measured over the entire composition range for (toluene + methyl acetate + butyl acetate) and (toluene + methyl acetate + methyl heptanoate) systems. Excess molar volumes, VE, isentropic compressibility, κs, isentropic compressibility deviations, Δκs, and changes of refractive index on mixing, ΔnD, for the above systems, have been calculated from experimental data and fitted to Cibulka, Singh et al., and Nagata and Sakura equations, standard deviations from the regression lines are shown. Geometrical solution models, Tsao and Smith, Kholer, Jacob and Fitzner, Rastogi et al. were also applied to predict ternary properties from binary contributions.  相似文献   

17.
Spectral and molecular model computations on homo-dinuclear complexes [M2L2(H2O)2Cl2] [L = 1-(salicylaldeneamino)-3-hydroxypropane, M = Cr3+, Mn3+, Fe3+, Co3+, Ni3+ or Cu3+] are consistent with a distorted hexa-coordinate geometry. X-band EPR spectral data indicated a rhombic distortion around Cu(II) ion. Magnetic moment and 57Fe Mössbauer data confirmed a high-spin state electronic configuration (t2g3eg2, S = 5/2) and asymmetric ligand environment around Fe(III) with nuclear transitions Fe(±3/2  1/2) exhibiting Kramer's double degeneracy. The neighboring Fe(III) nuclei in the homo-dinuclear species are antiferromagnetically coupled.  相似文献   

18.
《Comptes Rendus Chimie》2007,10(7):568-572
A series of new ligands derived from N,N′-O-phenylenebis(salicylideneimine) have been synthesized and characterized by spectrometric methods. Their protonation constants and the stability constants of their complexes with Mn2+, Co2+, Ni2+ et Cu2+ have been determined by potentiometric methods in a water–ethanol (90:10 v/v) mixture at a 0.2 mol l−1 ionic strength (NaCl) and at 25.0 ± 0.1 °C. The Sirko program was used to determine the protonation constants as well as the binding constants of both species [M(HL)]+ and [ML]. The stability order obtained is in agreement with Irving–Williams series.  相似文献   

19.
An in situ study of the effects of Na+, Mg2+ and Cr3+ on direct methanol fuel cell (DMFC) performance is reported. The result showed that dramatic decrease of the cell voltage was mainly ascribed to the increase of the cathode overpotential. Meanwhile, the different contamination effects by introducing Na+, Mg2+ and Cr3+ to the anode and the cathode were compared. When the same molar concentration of different cations was added to the anode feed, the contamination effect on the cell performance followed the order of Na+ > Mg2+ > Cr3+. Owing to the fast transfer speed and the low affinity to the sulfonic acid groups in the ionomer phase, the low-valent cations may cause much more proton losses than the high-valent cations in the cathode catalyst layer (CCL) within the same time. So the low-valent cations led to the higher cathode overpotential than the high-valent cations. When the same molar concentration of cations was directly added to the CCL, the contamination effects on the cell voltage showed an opposite trend which is Na+ < Mg2+ < Cr3+. This is presumably because a high-valent cation can exchange more protons than a low-valent cation in the CCL.  相似文献   

20.
Two novel C2-symmetric optically active pyridine-15-crown-5 type ligands containing lipophilic chains at the stereogenic centres, macrocycles 5 and 6, were prepared from (S)-1,2-propanediol and (S)-3-aryloxy-1,2-propanediol for the enantiomeric recognition of amino acid ester derivatives. These novel macrocycles have been shown to be strong complexing agents for primary organic ammonium salts (with K values of up to 1363.5 M?1, ΔGo of up to 17.86 kJ mol?1 and a selectivity ratio of 80:20) by 1H NMR titration method. These macrocyclic host exhibited enantioselective binding towards the l-enantiomer of phenylalanine methyl ester hydrochloride with KL/KD up to 8.57 in CDCl3 containing 0.25% CD3OD. Experimental results have been detailed with molecular dynamic calculations at atomic level concerning the molecular recognition and discrimination properties of a chiral pyridino-15-crown-5. The binding free energies were calculated as ~?25 kJ mol?1. The results indicated that the host binds and discriminates valine salts better than phenylalanine salts. The molecular dynamics, MM/PBSA calculations are consistent with the 1H NMR results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号