首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 317 毫秒
1.
Finite element modeling of the impact of flexible woven fabrics using a yarn level architecture allows the capturing of complex projectile-fabric and yarn–yarn level interactions, however it requires very large computational resources. This paper presents a multiscale modeling technique to simulate the impact of flexible woven fabrics. This technique involves modeling the fabric using a yarn level architecture around the impact region and a homogenized or membrane type architecture at far field regions. The level of modeling resolution decreases with distance away from the impact zone. This results in a finite element model with much lower computational requirements. The yarns are modeled using both solid and shell finite elements. Impedances are matched across all interfaces created between the various regions of the model to prevent artificial reflections of the longitudinal strain waves. A systematic approach is presented to determine geometric and material parameters of the homogenized zone. The multiscale model is extensively validated against baseline models. The limitations of using shell elements to model the yarn level architecture underneath the projectile are addressed.  相似文献   

2.
Size-effects on yield surfaces for micro reinforced composites   总被引:1,自引:0,他引:1  
Size effects in heterogeneous materials are studied using a rate independent higher order strain gradient plasticity theory, where strain gradient effects are incorporated in the free energy of the material. Numerical studies are carried out using a finite element method, where the components of the plastic strain tensor appear as free variables in addition to the displacement variables. Non-conventional boundary conditions are applied at material interfaces to model a constraint on plastic flow due to dislocation blocking. Unit cell calculations are carried out under generalized plane strain conditions. The homogenized response of a material with cylindrical reinforcing fibers is analyzed for different values of the internal material length scale and homogenized yield surfaces are presented. While the main focus is on initial yield surfaces, subsequent yield surfaces are also presented. The center of the yield surface is tracked under uniaxial loading both in the transverse and longitudinal directions and an anisotropic Bauschinger effect is shown to depend on the size of the fibers. Results are compared to conventional predictions, and size-effects on the kinematic hardening are accentuated.  相似文献   

3.
利用有限元方法求取单向纤维增强复合材料的横向弹性性能参数的计算模型包括三维模型、两维平面应变模型、单胞模型等等.由于单胞模型仅仅适用于纤维规则排列情况.在纤维随机分布且纤维大小亦为随机时,单向纤维增强复合材料横向弹性性能参数必须通过对于复合材料块体的计算才能获得.同时在随机分布纤维的数量增大时,三维模型和二维平面应变模型的计算量急剧增加,模型的处理能力不强.该文提出一种利用内嵌区域模型来计算含大量随机大小、随机分布细小纤维的单向纤维增强复合材料块体的横向弹性性能参数的方法,有效降低了计算量.在较低的计算费用下,能够快速获得单向纤维增强复合材料的横向弹性性能参数.  相似文献   

4.
In the analysis of materials with random heterogeneous microstructure the assumption is often made that material behavior can be represented by homogenized or effective properties. While this assumption yields accurate results for the bulk behavior of composite materials, it ignores the effects of the random microstructure. The spatial variations in these microstructures can focus, initiate and propagate localized non-linear behavior, subsequent damage and failure. In previous work a computational method, moving window micromechanics (MW), was used to capture microstructural detail and characterize the variability of the local and global elastic response. Digital images of material microstructure described the microstructure and a local micromechanical analysis was used to generate spatially varying material property fields. The strengths of this approach are that the material property fields can be consistently developed from digital images of real microstructures, they are easy to import into finite element models (FE) using regular grids, and their statistical characterizations can provide the basis for simulations further characterizing stochastic response. In this work, the moving window micromechanics technique was used to generate material property fields characterizing the non-linear behavior of random materials under plastic yielding; specifically yield stress and hardening slope, post yield. The complete set of material property fields were input into FE models of uniaxial loading. Global stress strain curves from the FE–MW model were compared to a more traditional micromechanics model, the generalized method of cells. Local plastic strain and local stress fields were produced which correlate well to the microstructure. The FE–MW method qualitatively captures the inelastic behavior, based on a non-linear flow rule, of the sample continuous fiber composites in transverse uniaxial loading.  相似文献   

5.
A fiber optic sensor for transverse strain measurement   总被引:1,自引:0,他引:1  
A fiber optic sensor capable of measuring two independent components of transverse strain is described. The sensor consists of a single Bragg grating written into high-birefringent, polarization-maintaining optical fiber. When light from a broadband source is used to illuminate the sensor, the spectra of light reflected from the Bragg grating contain two peaks corresponding to the two orthogonal polarization modes of the fiber. Two independent components of transverse strain in the core of the fiber can be computed from the changes in wavelength of the two peaks if axial strain and temperature changes in the fiber are zero or known. Experiments were performed to determine the response of the sensor by loading an uncoated sensor in diametral compression over a range of fiber orientations relative to the loading. The results of these experiments were used with a finite element model to determine a calibration matrix relating the transverse strain in the sensor to the wavelength shifts of the Bragg peaks. The performance of the sensor was then verified by measuring the transverse strains produced by loading the fiber in a V-groove fixture.  相似文献   

6.
A leading reason for the limited use of laminated composite materials in primary structural applications is that the failure initiates in the ply oriented transverse to the direction of the applied load at a much lower strain level than that which would cause the ultimate failure of the laminate. Previous studies indicate that transverse failure is manifested as either cavitation-induced failure of the matrix system or fiber-matrix debonding. The mechanism causing the failure initiation event is not decidedly known and depends on the local stress field of the constrained matrix that is a function of fiber spacing. In the present study a model composite system using a transparent matrix is employed in a cruciform-shaped specimen to evaluate the viability of several transverse failure theories. The cruciform-shaped specimen utilizes a low strain-to-failure 828/D230 RT cured epoxy and stainless steel wires arranged such that a fiber is placed at the intersection of face diagonals of four remaining fibers located at corners of a square. The transverse failure mechanism is observed in-situ via the reflected light method and recorded utilizing high resolution, high magnification microscope cameras. A parametric study is conducted using three dimensional finite element models to analyze the stress state in the cruciform specimen as a function of fiber spacing. The result of the 3-D FE models in conjunction with experimental observations are used to evaluate the transverse failure theories suggested in the literature. In addition this data will be used to develop a comprehensive failure criterion for transversely loaded multi-fiber composites that encompasses the dependence on fiber spacing.  相似文献   

7.
A general and systematic approach for the development of mesostructurally-based continuum model of woven fabrics has been elaborated, relating the fabric behavior at the macroscopic continuum scale to the response and geometry of the fabric’s mesostructure (geometrical configuration of the weave and the yarn properties). Mesoscopic discrete models of dry fabric have been developed based on a discretization of the yarn geometry, accounting for the yarn–yarn interactions at the yarns crossing points. The yarns are modeled within a unit cell consisting of the repetitive fabric pattern as curved planar beams submitted to the reaction forces of the transverse yarns at discrete crossover points. Those reaction forces are expressed in semi-analytical form versus the yarn geometry and mechanical properties for general armour from beam theory. The equilibrium shape of the woven fabric is obtained by minimizing its total potential energy, accounting for the work of the reaction forces due to the transverse yarns. The absolute minimum of the structure’s total potential energy is achieved by a classical genetic algorithm. Simulation results show that plain weave presents a nonlinear response in the early deformation stage due to the crimp change, whereas twill shows a quasi linear response due to yarn extension being the dominant deformation mechanism. Plain weave fabric overall exhibits an orthotropic constitutive law, as biaxial simulations show. The transverse behavior of plain weave fabric is presently evaluated in terms of Poisson’s ratio, based on virtual simulations at the mesoscopic scale of analysis. Simulation results show that Poisson’s ratio first increases towards a maximum due to the rapid shrinkage of the sample in the transverse direction, and decreases thereafter when the crimp changes become limited by the reaction forces of the transverse yarns. The influence of the mechanical properties of both warp and weft on Poisson’s coefficient is assessed. The predictions of the mesoscopic models regarding the impact of yarn geometry and mechanical properties on the overall behavior provide a guideline for the design of woven fabrics.  相似文献   

8.
The evolution of spatially resolved internal strain/stress during the manufacturing of thermoplastic composites and subsequent relaxation from water intake are evaluated using an in-situ fiber optic sensor corresponding to a coated optical glass fiber with a nominal diameter of 160 μm. Unidirectional carbon fiber-polyamide 6 composites are produced using compression molding with an embedded fiber optic for strain measurement. The distributed fiber optic based strain sensor is placed in an arrangement to capture 0, 45, and 90° strains in the composite to resolve in-plane strain tensor. Strains are monitored in the direction of fiber optic sensor along its length at high resolution during the various stages of compression molding process. Results indicate considerable internal strains leading to residual stress at the end of processing step along the off-axis (45°) and transverse (90°) directions, and small strains in the carbon fiber pre-preg (0°) direction. At the end of compression molding process, an average of 7000 and 10,000 compressive micro-strains are obtained for residual state of strain in the off-axis and transverse direction. Since water/moisture infusion affects the mechanical properties of polyamide-6 matrix resin, these composite panels with embedded sensors targeted for marine applications are monitored in a water bath at 40 °C simulating accelerated testing conditions. Using the same fiber optic sensor based technique, the strain relaxation was observed during water uptake demonstrating in-situ strain monitoring during both manufacturing and subsequent composite implementation/application environment. The technique presented in this paper shows the potential of optimizing time-temperature-pressure protocols typically utilized in thermoplastic manufacturing, and continuous life-cycle monitoring of composite materials using a small diameter and inexpensive distributed fiber optic sensing.  相似文献   

9.
Kevlar纤维增强复合材料动态压缩力学性能实验研究   总被引:13,自引:0,他引:13  
通过实验较系统地研究了Kevlar纤维增强复合材料的动态压缩力学性能,实验结果表明,在冲击压缩载荷作用下Kevlar纤维增强复合材料有明显的损伤软化现象和应变率效应,针对Kevlar纤维增强复合材料动态应力应变实验曲线,提出了含损伤的率相关动态本构方程,由于所引入的损伤最反映了Kevlar纤维增强复合材料内部基体开裂、脱层、纤维断裂等多种破坏模式的总体效果,因此所提出的本构方程形式相对说来比较简便并易于嵌入目前有关冲击力学的有限元或有限差分程序,有一定的工程应用价值。  相似文献   

10.
In this study, the deformation behaviour of polycrystalline austenitic 316H stainless steel under uniaxial loading is investigated by means of in-situ neutron diffraction (ND) measurement and crystal plasticity-based finite element (FE) modelling. Data have been obtained for the macroscopic stress–strain response and the lattice strain evolution in the longitudinal and transverse direction relative to the uniaxial loading axis. Comparison between the model predictions and the ND measurements suggests that in most cases the FE model can predict the lattice strain evolution at the microscale and capture the general trends observed in the experiments. Both ND measurements and FE modelling simulations identify little effect of micromorphology effect on the longitudinal lattice strain evolution, while the transverse lattice strain response appears to be sensitive to the microstructure, in particular the initial crystallographic orientation of the material.  相似文献   

11.
Murata vortex spinning (MVS) is a recently developed spinning technology which utilizes high speed swirling airflow to insert twist into the yarn. The motional characteristics of the flexible fibers in the airflow inside the MVS nozzle are of vital importance to the yarn formation mechanism and properties. The fiber motion in the MVS nozzle involves fluid-structure interaction (FSI) and contact problems. In this paper, a two-dimensional FSI model combined with the fiber-wall contact is introduced to simulate a single fiber moving in the airflow inside the MVS nozzle. The model is solved using a finite element code ADINA. Based on the model, the motional characteristics of the fiber are analyzed and the effect of two process parameters - the nozzle pressure and yarn delivery speed - on the fiber motion and, in turn, the yarn tenacity is discussed. The results indicate that the fiber firstly undergoes a false-twisting process. Subsequently, its trailing end splays out and whirls within the nozzle chamber for several turns to helically wrap and make the spun yarn. The results also show that the effect of the nozzle pressure on the tenacity of the produced MVS yarn is not obvious. The increased yarn delivery speed leads to the decreased MVS yarn tenacity. The numerical results show good agreement with the experimental results provided by other researchers.  相似文献   

12.
The use of 3D digital image correlation (DIC) has been used to capture the Lüders strains in a low carbon ferritic steel. Results were used to calibrate and compare with finite element (FE) results based on a constitutive plasticity model, capable of yield drop behaviour and therefore Lüders strains, by Zhang et al. (2001). Tensile tests were carried out at several strain rates to characterise the material behaviour. The results of these tests were used to fit parameters in the constitutive plasticity model. The FE model was then tested on a complex loading situation of in-plane compression of a compact tension (CT) specimen. The FE model predicts the shape and formation of the Lüders bands well. This FE model, using Zhang’s constitutive plasticity model, was used to predict the residual stress profile to compare with standard elastic–plastic isotropic hardening models with no yield point. The yield point reduced both the predicted peak tensile stress, at the notch root, and the amount of plastic strain. In regions where the plastic strain was of a similar size to the Lüders strain the stress profiles were perturbed from flat profiles predicted by the standard elastic–plastic hardening models.  相似文献   

13.
缝合复合材料层合板中贯穿厚度方向的缝线,能有效增强层合板的抗分层能力。本文对一种碳纤/环氧缝合复合材料层板进行了短梁三点弯试验,测得了压头的载荷-位移曲线,并观察了层间裂纹的扩展,证实了缝线对层间裂纹的阻滞作用。建立了三维有限元模型模拟了上述试验,模型中相邻的铺层之间布置了一层初始无厚度的界面单元,界面单元的失效自然模拟层间开裂,而缝线简化为面积等效的梁单元,数值结果与试验观测吻合。  相似文献   

14.
A mechanism-based progressive failure analyses (PFA) approach is developed for fiber reinforced composite laminates. Each ply of the laminate is modeled as a nonlinear elastic degrading lamina in a state of plane stress according to Schapery theory (ST). In this theory, each lamina degrades as characterized through laboratory scale experiments. In the fiber direction, elastic behavior prevails, however, in the present work, the phenomenon of fiber microbuckling, which is responsible for the sudden degradation of the axial lamina properties under compression, is explicitly accounted for by allowing the fiber rotation at a material point to be a variable in the problem. The latter is motivated by experimental and numerical simulations that show that local fiber rotations in conjunction with a continuously degrading matrix are responsible for the onset of fiber microbuckling leading to kink banding. These features are built into a user defined material subroutine that is implemented through the commercial finite element (FE) software ABAQUS in conjunction with classical lamination theory (CLT) that considers a laminate as a collection of perfectly bonded lamina (Herakovich, C.T., 1998. Mechanics of Fibrous Composites. Wiley, New York). The present model, thus, disbands the notion of a fixed compressive strength, and instead uses the mechanics of the failure process to provide the in situ compression strength of a material point in a lamina, the latter being dictated strongly by the current local stress state, the current state of the lamina transverse material properties and the local fiber rotation. The inputs to the present work are laboratory scale, coupon level test data that provide information on the lamina transverse property degradation (i.e. appropriate, measured, strain–stress relations of the lamina transverse properties), the elastic lamina orthotropic properties, the ultimate tensile strength of the lamina in the fiber direction, the stacking sequence of the laminate and the geometry of the structural panel. The validity of the approach advocated is demonstrated through numerical simulations of the response of two composite structural panels that are loaded to complete failure. A flat, 24-ply unstiffened panel with a cutout subjected to in-plane shear loading, and a double notched 70-ply unstiffened stitched panel subjected to axial compression are selected for study. The predictions of the simulations are compared against experimental data. Good agreement between the present PFA and the experimental data are reported.  相似文献   

15.
3D composite materials are characterized by complex internal yarn architectures, leading to complex deformation and failure development mechanisms. Net-shaped preforms, which are originally periodic in nature, lose their periodicity when the fabric is draped, deformed on a tool, and consolidated to create geometrically complex composite components. As a result, the internal yarn architecture, which dominates the mechanical behaviour, becomes dependent on the structural geometry. Hence, predicting the mechanical behaviour of 3D composites requires an accurate representation of the yarn architecture within structural scale models. When applied to 3D composites, conventional finite element modelling techniques are limited to either homogenised properties at the structural scale, or the unit cell scale for a more detailed material property definition. Consequently, these models fail to capture the complex phenomena occurring across multiple length scales and their effects on a 3D composite’s mechanical response. Here a multi-scale modelling approach based on a 3D spatial Voronoi tessellation is proposed. The model creates an intermediate length scale suitable for homogenisation to deal with the non-periodic nature of the final material. Information is passed between the different length scales to allow for the effect of the structural geometry to be taken into account on the smaller scales. The stiffness and surface strain predictions from the proposed model have been found to be in good agreement with experimental results.The proposed modelling framework has been used to gain important insight into the behaviour of this category of materials. It has been observed that the strain and stress distributions are strongly dependent on the internal yarn architecture and consequently on the final component geometry. Even for simple coupon tests, the internal architecture and geometric effects dominate the mechanical response. Consequently, the behaviour of 3D woven composites should be considered to be a structure specific response rather than generic homogenised material properties.  相似文献   

16.
The formation of high intensity shear zones in a glass fiber reinforced thermoplast is studied numerically. The thermoplast is characterized by a finite strain elastic-viscoplastic constitutive relation and the calculations are carried out using a dynamic finite element program where plane strain conditions are assumed to prevail in the direction of the thickness. Different ratios of the elongation strain and the transverse strain are studied to consider the effect of different levels of stress triaxiality and the effect of these states on the shear zone development and emerging strain and stress concentrations. Comparing a case of embedded infinitely stiff fibers to a case with glass fiber reinforcement shows little difference thus illustrating that the glass fibers act approximately as infinitely stiff. Fiber spacing and fiber width are shown to influence the shear zones and the stress fields that develop as the highly deformed region approaches the limit resulting from network stiffening in the polymer. A simple analysis assuming periodicity is included in order to study the mechanical behaviour of the polymer matrix between fiber ends with long overlap.  相似文献   

17.
Recent morphological studies have demonstrated a laminar (sheet) organization of ventricular myofibers. Multiaxial measurements of orthotropic myocardial constitutive properties have not been reported, but regional distributions of three-dimensional diastolic and systolic strains relative to fiber and sheet axes have recently been measured in the dog heart by Takayama et al. [30]. A three-dimensional finite-deformation, finite element model was used to investigate the effects of material orthotropy on regional mechanics in the canine left ventricular wall at end-diastole and end-systole. The prolate spheroidal model incorporated measured transmural distributions of fiber and sheet angles at the base and apex. Compared with transverse isotropy, the orthotropic model of passive myocardial properties yielded improved agreement with measured end-diastolic strains when: (1) normal stiffness transverse to the muscle fibers was increased tangent to the sheets and decreased normal to them; (2) shear coefficients were increased within sheet planes and decreased transverse to them. For end-systole, orthotropic passive properties had little effect, but three-dimensional systolic shear strain distributions were more accurately predicted by a model in which significant active systolic stresses were developed in directions transverse to the mean fiber axis as well as axial to them. Thus the ventricular laminar architecture may give rise to anisotropic material properties transverse to the fibers with greater resting stiffness within than between myocardial laminae. There is also evidence that intact ventricular muscle develops significant transverse stress during systole, though it remains to be seen if active stress is also orthotropic with respect to the laminar architecture. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

18.
Creep models for unidirectional ceramic matrix composites reinforced by long creeping fibers with weak interfaces are presented. These models extend the work of Du and McMeeking (1995) [Du, Z., McMeeking, R. 1995. Creep models for metal matrix composites with long brittle fibers. J. Mech. Phys. Solids 43, 701–726] to include the effect of fiber primary creep present in the required operational temperatures for ceramic matrix composites (CMCs). The effects of fiber breaks and the consequential stress relaxation around the breaks are incorporated in the models under the assumption of global load sharing and time-independent stochastics for fiber failure. From the set of problems analyzed, it is found that the high-temperature deformation of CMCs is sensitive to the creep-compliance of the fibers. High fiber creep-compliance drives the composite to creep faster, leading however to greater lifetimes and greater overall strains at rupture. This behavior is attributed to the fact that the greater the creep-compliance of the fibers, the higher the creep rate but the slower the matrix stress relaxation – since the matrix must deform with a rate compatible with the more creep-resistant fibers – and therefore the less the load carried by the main load-bearing phase, the fibers. As a result, fewer fibers fail and less damage is accumulated in the system. Moreover, the greater the creep-compliance of the fibers, the slower the matrix shear stress relaxation – and thus the lower the levels of applied stress for which this effect becomes important. The slower the shear stress relaxes, the slower the “slip” length increases. Due to the Weibull nature of the fibers, the fiber strengths at the smaller gauge length of the slip length are stronger; therefore fewer fibers undergo damage. Hence, high fiber creep-compliance is desirable (in the absence of any explicit creep-damage mechanism) in terms of composite lifetime but not in terms of overall strain. These results are considered of importance for composite design and optimization.  相似文献   

19.
This paper examines the combination of radial deformation with torsion for a circular cylindrical tube composed of a transversely isotropic hyperelastic material subject to finite deformation swelling. The stored energy function involves separate matrix and fiber contributions such that the fiber contribution is minimized when the fiber direction is at a natural length. This natural length is not affected by the swelling. Hence swelling preferentially expands directions that are orthogonal to the fiber. The swelling itself is described via a swelling field that prescribes the local free volume at each location in the body. Such a treatment is a relatively simple generalization of the conventional incompressible theory. The direction of transverse isotropy associated with the fiber reinforcement is described by a helical winding about the tube axis. The swelling induced preferential expansion orthogonal to this direction induces the torsional aspect of the deformation. For a specific class of strain energy functions we find that the twist increases with swelling and approaches a limiting asymptotic value as the swelling becomes large. The fibers reorient such that fibers at the inner portion of the tube assume a more circumferential orientation whereas, at least for small and moderate swelling, the fibers in the outer portion of the tube assume a more axial orientation. For large swelling the fibers in the outer portion of the tube reorient beyond the axial orientation, and so are described by helices with orientation in the opposite sense to that in the reference configuration.   相似文献   

20.
This paper presents experimental studies on the mechanical behavior of fiber fabrics using a biaxial tensile device based on two deformable parallelograms. The cross-shaped specimens are well adapted to fabrics because of their lack of shear stiffness. Tension versus deformation curves, for different strain ratios, are obtained in the case of composite woven reinforcements used in aeronautic applications. It is shown that the tensile behavior of the fabric is strongly nonlinear due to the weaving undulations and the yarn contraction, and that the phenomenon is clearly biaxial. A constitutive model is described and identified from the experimental data. The essential role played by the yarn crushing will be pointed out.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号