首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 597 毫秒
1.
The use of through-thickness reinforcement in the form of short rods has been proposed to improve the interlaminar properties of laminated composites in the recent years. Compared to a fibrous short rod, which is often referred to as z-fiber, a metallic rod, referred to as z-rod in this paper, has reasonably high capability to carry transverse loading, i.e., a z-rod can provide both axial and transverse bridging tractions to the delamination crack. Therefore, a new analytical model is proposed to study the bending effect of the z-rods on mode I delamination toughness of laminated composites. In this new model, both the axial pull-out and the transverse bending are considered simultaneously. New bending moment and displacement relationships for a single z-rod are established by modeling the z-rod embedded in a linearly elastic and rigid-perfectly plastic matrix using the classical beam theory. By using an approximate expression for mode I fracture toughness of double-cantilever-beam (DCB) specimen, a parametric analysis of DCB specimen reinforced by the z-rods is conducted. The present numerical results show that the bending effect should not be ignored when stiffer z-rods are employed to reinforce the laminated composites.  相似文献   

2.
3.
The paper presents an analytical solution capable of predicting the effect of matrix cracking in ceramic matrix composites (CMC) on damping. The cracking scenarios considered in the paper include through-the-thickness cracks and cracks terminating at the layer interfaces. The increase in damping associated with matrix cracking is mostly due to the frictional energy dissipation along the damaged fiber–matrix interfaces adjacent to the bridging cracks whose plane of propagation intersects the fiber axis. Damping increases with a higher density of matrix cracks. The loss factor is affected by the angle of the lamina relative to the direction of the applied load. The loss factor is also influenced by the frequency and magnitude of local dynamic stresses. Examples of distributions of the local loss factor along the axis of a CMC beam subject to pulsating loads of various frequencies are shown in the paper.  相似文献   

4.
层状纤维圆柱壳轴向压缩破损实验研究   总被引:2,自引:0,他引:2  
郑金鑫  于增信 《实验力学》1999,14(2):237-242
通过对端部引发缺陷层状纤维复合材料圆柱壳在轴向准静态和冲击压缩下的实验研究,分析其渐进压缩破损模式和破坏模式的形成机理.研究此类结构的缓冲性能.实验研究表明随着纤维铺设角度的改变其破损模式的主导形式与分层扩展强度、环向断裂强度和纤维与基体脱胶裂纹相关.它们的断裂韧度的高低决定结构的能量吸收能力  相似文献   

5.
This paper deals with a mode III interfacial crack subject to anti-plane stress and in-plane electric fields. The analysis concentrates on the tuning of fracture toughness from non-uniform ferroelectric-ferroelastic domain switch-ing by an electric field. The electric loading changes the size of the asymmetric switching zone. Employing the weight function method, we obtain the electrically-dependent switch toughening for stationary and quasi-static growing interfacial cracks, respectively. Multi-domain solutions are derived for non-poled and fully-poled ferroelectric composites. Numer-ical results are presented on the electric field tuning of the critical applied stress intensity factor. The research provides ways to optimize fracture properties of ferroelectric compos-ites by altering the electric field.  相似文献   

6.
复合材料层合板壳非线性力学的研究进展   总被引:4,自引:0,他引:4  
复合材料层合板壳是由多种组分材料组合而成.与单一材料的板壳结构相比,它无明确的材料主方向,各层间材料间断和不连续,具有明显的几何非线性和材料非线性等新的特点.其失效模式也远比单一材料的情况复杂,具有如基体开裂、脱胶、分层、分层裂纹偏转、多分层以及分层传播等多种模式.各国学者基于不同的考虑,提出了多种方法研究复合材料层合板壳的失效.首先,在简要介绍了层合板壳线性力学基本理论的基础上,重点回顾了层合板壳结构非线性力学几种基本理论发展的过程,主要阐述了经典大挠度非线性理论、一阶剪切变形理论、高阶剪切变形理论、锯齿理论、广义分层理论的理论体系及基本公式,并对几种理论之间的联系和差异进行了总结;其次,介绍了当前层合结构非线性领域的研究进展,综述了典型复合材料板壳结构的失效机理及优化设计、复合材料板壳结构在复杂环境下的破坏机理、复合材料板壳结构的物理非线性、含脱层纤维增强复合材料板壳结构的破坏机理等各研究热点的最新研究成果;最后,对该领域未来的研究方向进行了展望.  相似文献   

7.
The effects of the transverse strain (the normal strain in the crack-line direction) on the near-tip fields of small shallow surface cracks (Case A cracks) in power-law hardening materials are investigated by finite element analyses. The small Case A cracks are under plane stress, general yielding, and mixed mode I and II conditions. Constant effective stress contours representing the intense straining zones near the tip, deformed crack-tip profiles and near-tip mode mixity factors are presented for different transverse strains in the crack-line direction. Based on the concept of characterization of fatigue crack growth by the cyclic J-integral, the effects of the transverse strain on J are investigated. The results suggest that the fatigue life prediction based on multiaxial fatigue theories and the critical plane approach should include the constraint effects due to the transverse strain. Consequently, the concept of constant fatigue life contour on the Γ-plane in multiaxial fatigue theories is generalized to the constant fatigue life surface in the Γ-space where the shear strain and the two normal strains are the three axes. Finally, a damage parameter as a function of the shear strain and the two normal strains is proposed for evaluation of fatigue damage under multiaxial loading conditions.  相似文献   

8.
A graphite crack gage familiar to fracture testing of nonconductive polymeric materials has been adapted to measure delamination growth in carbon fiber composites. The gage consists of a continuous graphite film whose conductance changes linearly with respect to crack length. The development of an insulation technique so that the electrical film may be applied to carbon fiber composites is described. Further constraints on the gage design occur due to the narrow profiles of conventional delamination specimens. These limitations are reviewed in detail along with appropriate methods for manufacturing and calibration of the gage for delamination experiments. A simple shunt voltage measurement circuit is described along with a derivation of the relationship of crack length to voltage. Two example applications are provided: stable delamination growth in a conventional double cantilever beam (DCB) specimen and dynamic delamination growth in a single-edge-notched (SEN) strip. The electrical delamination length measurements from the DCB tests were found to compare well with the location of the delamination front determined by microscopy and radiography. These results give confidence in dynamic delamination results where growth rates exceeding 1000 m/s were measured. Sample evaluations of delamination toughness are made using the experimental data; compliance methods are used in the case of the DCB analysis, and dynamic finite element methods are used in the case of the SEN strip analysis.  相似文献   

9.
Delamination mechanisms and energy dissipation of carbon fibre epoxy composites under impact and high strain rate conditions are studies in terms of a new experimental set-up. The test set-up is designed to separate the Mode-I, -II and mixed mode delamination resistance so that relevant mechanisms can be studied in greater detail. The impact specimens consist of 18 × 18 mm laminated composite pieces bonded to steel bars to form the impact specimens with the normal Charpy and Izod specimen geometry. The impact energy dissipation is recorded and taken as a dynamic delamination toughness measurement, and the transition from the pure Mode-I to Mode-II through the mixed mode delamination is measured. Detailed delamination surface examinations by scanning electron microscopy (SEM) show that different failure mechanisms are involved in the dynamic and usual quasi-static delamination processes. The influence of chopped Kevlar fibres used as low cost interlaminar reinforcement on the energy dissipation is also studied.  相似文献   

10.
Under static pre-stress, small voids located between constituent layers in a laminated composite may extend both as interface flaws and as cracks into the layers themselves. Thus, the material may fail due to the combined effects of delamination (separation) and fracture of the layers. As a first step in understanding this complex process, while minimizing mathematical difficulties, a simple idealized example of such a process is examined. A cruciform brittle crack-flaw combination is assumed to initiate at the interface of perfectly-bonded half-spaces under a uniform anti-plane shear field and to extend with constant speeds. When the crack and wave speeds satisfy a simple relation, straight-forward solutions to the resulting wave propagation problem can be obtained and several crackflaw interaction effects noted. In particular, the stress intensities and energy flux rates at the crack and flaw edges are studied.  相似文献   

11.
纳米夹杂复合材料的有效反平面剪切模量研究   总被引:1,自引:0,他引:1  
基于Gurtin-Murdoch表面/界面理论模型,利用复变函数方法,获得了考虑夹杂界面应力时夹杂/基体/等效介质模型的全场精确解,发展了能够预测纳米夹杂复合材料有效反平面剪切模量的广义自洽方法,给出了复合材料有效反平面剪切模量的封闭形式解。数值结果显示:当夹杂尺寸在纳米量级时,复合材料的有效反平面剪切模量具有尺度相关性,随着夹杂尺寸的增大,本文结果趋近于经典弹性理论的预测值;夹杂尺寸对于有效反平面剪切模量(本文结果)的影响范围要小于其对有效体积模量与剪切模量(各向同性材料)的影响范围;有效反平面剪切模量受夹杂的界面性能和夹杂刚度影响显著。  相似文献   

12.
The effect of fiber arrangement on transverse tensile failure in unidirectional carbon fiber reinforced composites with a strong fiber-matrix interface was studied using a unit-cell model that includes a continuum damage mechanics model. The simulated results indicated that tensile strength is lower when neighboring fibers are arrayed parallel to the loading direction than with other fiber arrangements. A shear band occurs between neighboring fibers, and the damage in the matrix propagates around the shear band when the interfacial normal stress (INS) is sufficiently high. Moreover, based on the observation of Hobbiebrunken et al., we reproduced the damage process in actual composites with a nonuniform fiber arrangement. The simulated results clarified that the region where neighboring fibers are arrayed parallel to the loading direction becomes the origin of the transverse failure in the composites. The cracking sites observed in the simulation are consistent with experimental results. Therefore, the matrix damage in the region where the fiber is arrayed parallel to the loading direction is a key factor in understanding transverse failure in unidirectional carbon fiber reinforced composites with a strong fiber/matrix interface.  相似文献   

13.
平纹编织陶瓷基复合材料面内剪切细观损伤行为研究   总被引:5,自引:5,他引:0  
采用约西佩斯库(Iosipescu)纯剪切试件,研究了平纹编织SiC/SiC和C/SiC复合材料的面内剪切应力-应变行为和细观损伤特性.通过试验获得了材料不同方向上的单调和迟滞应力-应变行为,对比分析了两种材料的剪切损伤特性,结果表明材料的剪切损伤演化规律受热残余应力水平影响严重.由试件断口电镜扫描结果发现剪切加载状态下桥连纤维承受显著的弯曲载荷和变形,据此提出了纤维弯曲承载机制,并结合裂纹闭合效应分阶段阐释了材料的剪切迟滞环形状.基于材料的剪切细观损伤机制,通过两个损伤变量表征了材料的剪切损伤演化进程,得到了材料的面内剪切细观损伤演化模型.对比发现2D-C/SiC复合材料45°方向基体裂纹的起裂应力明显小于2D-SiC/SiC复合材料,而两者0°/90°方向裂纹的起裂应力基本相同.   相似文献   

14.
By means of the complex variable function method and the technique of conformal mapping, the anti-plane shear problem of an elliptic hole with two straight cracks in one-dimensional hexagonal quasicrystals is investigated. The solution of the stress intensity factor (SIF) for mode III problem has been found. Under the condition of limitation, both the known results and the SIF solution at the crack tip of a circular hole with two straight cracks and cross crack in one-dimensional hexagonal quasicrystals can be obtained.  相似文献   

15.
This three-part paper focuses on the effect of fiber architecture (i.e. shape and distribution) on the elastic and inelastic response of unidirectionally reinforced metal matrix composites (MMCs). The first part provides an annotated survey of the literature; it is presented as an historical perspective dealing with the effects of fiber shape and distribution on the response of advanced polymeric matrix composites and MMCs. A summary of the state of teh art will assist in defining new directions in this quickly reviving area of research. The second part outlines a recently developed analytical micromechanics model that is particularly well suited for studying the influence of these effects on the response of MMCs. This micromechanics model, referred to as the generalized method of cells (GMC), can predict the overall inelastic behavior of unidirectional, multiphase composites, given the properties of the constituents. The model is also general enough to predict the response of unidirectional composites that are reinforced by either continuous or discontinuous fibers, with different inclusion shapes and spatial arrangements, in the presence of either perfect or imperfect interfaces and/or interfacial layers. Recent developments on this promising model, as well as directions for future enhancements of the model's predictive capability, are included. Finally, the third part provides qualitative results generated by using GMC for a representative titanium matrix composite system, SCS-6/TIMETAL 21S. The results presented correctly demonstrate the relative effects of fiber arrangement and shape on the longitudinal and transverse stress-strain and creep behavior of MMCs, with both strong and weak fiber/matrix interfacial bonds. Fiber arrangements included square, square-diagonal, hexagonal and rectangular periodic arrays, as well as a random array. The fiber shapes were circular, square, and cross-shaped cross-sections. The effect of fiber volume fraction on the stress-strain response is also discussed, as is the thus-far poorly documented strain rate sensitivity effect. In addition to the well-documented features of the architecture-dependent behavior of continuously reinforced two-phase MMCs, new results are presented about continuous multiphase internal architectures. Specifically, the stress-strain and creep responses of composites with different size fibers and different internal arrangements and bond strengths are investigated; the aim was to determine the feasibility of using this approach to enhance the transverse toughness and creep resistance of titanium matrix composites (TMCs).  相似文献   

16.
A micromechanics analytical model based on the consistent shear lag theory is developed for predicting the failure modes in fiber reinforced unidirectional stiff matrix composites. The model accounts for a relatively large matrix stiffness and hence its load carrying capacity. The fiber and matrix stresses are established as functions of the applied stress, crack geometry, and the microstructural properties of the constituents. From the predicted stresses, the mode of failure is established based on a point stress failure criterion. The role of the microstructural parameters of the constituents on the failure modes such as self-similar continuous cracking, crack bridging and debonding parallel to the fibers is assessed.  相似文献   

17.
Based on a constitutive law which includes the shear components of transformation plasticity, the asymptotic solutions to near-tip fields of plane-strain mode I steadity propagating cracks in transformed ceramics are obtained for the case of linear isotropic hardening. The stress singularity, the distributions of stresses and velocities at the crack tip are determined for various material parameters. The factors influencing the near-tip fields are discussed in detail.Project supported by the National Natural Science Foundation of China  相似文献   

18.
This paper considers the anti-plane (or mode III) crack problem in a functionally graded material strip. The shear modulus of the strip is considered for a class of functional forms for which the equilibrium equation has an analytical solution. The problem is solved by means of singular integral equation technique. Both a single crack and a series of collinear cracks are studied. The results are tabulated and plotted to show the effect of the material nonhomogeneity and crack location on the stress intensity factors.  相似文献   

19.
The two-way shape memory effect in monolithic shape memory alloys has been widely investigated both theoretically and experimentally. In the present study, this effect is analyzed for shape memory alloy composites by employing a micromechanical model. To this end, the responses of polymeric matrix and metal matrix unidirectional composites with embedded shape memory alloy fibers are determined. For the polymeric matrix composite, the effect of axial, transverse and shear loadings as well as the fiber volume fraction on the resulting two-way shape memory behavior are studied. The local distributions of stresses among the shape memory alloy fiber and epoxy matrix in the low- and high-temperature shapes of the composite are also investigated. Two training procedures that generate the two-way shape memory effect in the metal matrix composite are offered. The present analysis shows that the two-way shape memory effect in the chosen type of metal matrix composite is not as useful as in the polymeric matrix one. Finally, for a polymeric matrix composite that is subjected to a transverse normal loading, the effect of imperfect bonding between the shape memory alloy fibers and the neighboring matrix is investigated.  相似文献   

20.
Dynamic delamination of thick fiber reinforced polymeric matrix composite laminates is investigated using optical techniques and high-speed photography. The laminates used in this work are graphite/epoxy fiber reinforced, 65 percent fiber volume fraction, composite plates consisting of 48 plies (6 mm plate thickness). Two different laminate layups are tested: a quasi-isotropic arrangement and a unidirectional arrangement. The experimental setup consists of 152 mm×152 mm square plates impact loaded in an outof-plane configuration using a high-speed gas gun. Impact speeds range from 1 m/s to 30 m/s. Real-time imaging of the laminate out-of-pane displacement is performed using the lateral shearing interferometer of coherent gradient sensing (CGS) in conjunction with high-speed photography. Onset of dynamic delamination can be observed, and quantities such as delamination speeds (in some cases up to 1800 m/s) are measured and reported. A brief comparison is made with dynamic fracture experiments of the same material conducted in a separate study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号