首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
CdS particles with crystallite size of 5-12 nm have been prepared via acoustic wave stimulated (sonochemical) route and microwave initiated combustion method. X-ray line broadening and transmission electron microscopy (TEM) suggest that sonochemical powders are more amorphous (5-10 nm) compared to microwave-synthesized sulphides (10-15 nm). The photoluminescent (PL) properties of powders with size <10 nm show a clearly blue shifted, resolved emission with full-width at half-maxima (FWHM) ∼100 nm, while powders with size >15 nm show dominant blue to green narrow emission with FWHM ∼60 nm. The mechanistic details of the synthetic route appear to affect the morphology and consequently the PL properties to a significant extent.  相似文献   

2.
Freshly prepared CdS-quantum dots (QDs) in DMF (clear pale solution) when loaded in polymethylmethacrylate (PMMA) lead to excellent optical properties. The tuning of the absorption and emission wavelengths via experimentally control parameters is considered novel and significant. The absorption band for CdS was observed at about 370 nm in polymeric matrix. The blue, green and orange light emissions from such composite solution were tuned and stabilized by simply varying the concentration of CdS, cadmium and sulphur in the final product. Photoluminescence (PL) measurement with 2% CdS loading showed band-edge emissions from the composite with only about 20-25 nm Stokes shift in emission wavelength. Observation of such optical properties indicated that the composite has narrow particle size distribution and particle diameter may well be below 10 nm. X-ray diffraction (XRD) patterns of the film with higher loading of CdS showed broad pattern for hexagonal CdS. Thermo-gravimetric analysis (TGA) of CdS/PMMA composite film revealed that it has better thermal stability than PMMA alone. Transmission electron microscopy (TEM) showed agglomerated tiny dots in nano-meter regime.  相似文献   

3.
This paper deals with the sol-gel elaboration and defects photoluminescence (PL) examination of Al2O3 nanocrystallites (size ∼30 nm) confined in glass based on silica aerogel. Aluminium oxide aerogels were synthesized using esterification reaction for hydrolysis of the precursor and supercritical conditions of ethyl alcohol for drying. The obtained nanopowder was incorporated in SiO2 host matrix. After heating under natural atmosphere at 1150 °C for 2 h, the composite Al2O3/SiO2 (AS) exhibited a strong PL bands at 400-600 and 700-900 nm in 78-300 K temperature range. PL excitation (PLE) measurements show different origins of the emission. It was suggested that OH-related radiative centres and non-bridging oxygen hole centres (NBOHCs) were responsible for the bands at 400-600 and 700-900 nm, respectively.  相似文献   

4.
Photoluminescence of CdS nanoparticles embedded in a starch matrix   总被引:1,自引:0,他引:1  
CdS nanoparticles were synthesized by precipitation in aqueous solution using starch as the capping molecule, and the effect of the pH of the solution on the optical absorption, photoluminescence, and size of the nanoparticles was studied. Absorption spectra, obtained by photoacoustic spectroscopy, indicated that the band gap energy of the crystalline nanoparticles decreased from 2.68 eV down to 2.48 eV by increasing the pH of the solution from 9 up to 14. The X-ray diffraction analysis revealed that the CdS nanoparticles were of zinc blende structure, and that the particle size increased from 1.35 nm up to 2.45 nm with increasing pH. In addition, temperature-dependent photoluminescence (PL) measurements of the capped material showed a blue-shift of the emission peak for temperatures higher than 150 K, indicating the influence of starch on the formation of defect levels on the surface of the CdS nanoparticles.  相似文献   

5.
Here, we report the role of particle size on the photoluminescence (PL) properties of CdS:Eu3+ nanocrystals by steady-state and time-resolved PL spectroscopy. It is found that the average decay time 〈τ〉 of undoped CdS nanocrystals increases with increasing the size. The fast component (nanosecond) is assigned due to trapping and slow component (above 10 ns) is due to defect-related emission. The decrease of fast component from 6.6 to 1.32 ns and the slow component from 20 to 14.6 ns of CdS (host) is observed in presence of Eu ions, indicating that the energy transfer occurs from CdS nanoparticles to Eu3+ ions. The decay time of Eu3+ in CdS shows two decay components (microsecond scale) and we believe that the fast component is attributed to surface-bound Eu3+ ions and slow component is due to lattice-bound Eu3+ ions. Analysis suggests that PL efficiency of Eu3+ ions depends on size of nanoparticles.  相似文献   

6.
The luminescence property of anodic alumina membranes (AAMs) with ordered nanopore arrays prepared by electrochemically anodizing aluminum in oxalic acid solutions have been investigated. Photoluminescence emission (PL) measurement shows that a blue PL band occurs in the wavelength ranges of 300-600 nm. The PL intensity and peak position of AAMs depend markedly on the excitation wavelength. A new peak located at 518 nm can be observed under a monitoring wavelength at 429 nm in the photoluminescence excitation (PLE) spectra. Convincing evidences have been presented that the PLE would be associated with the residual aluminum ions in the membrane. The PLE and PL of AAMs, as a function of anodizing times, have been discussed. It is found that the oxalic impurities incorporated in the AAMs would have important influences on the optical properties of AAMs in the initial stage of anodization. The PL and PLE spectra obtained show that there are three optical centers, of which the first is originated from the F+ centers in AAMs, the second is correlated with the oxalic impurities incorporated in the AAMs, and the third is associated with the excess aluminum ions in the membrane.  相似文献   

7.
Hierarchical calcium molybdate (CaMoO4) nanostructured microspheres were synthesized via a facile room-temperature route assisted by an ionic liquid, 1-n-butyl-3-methylimidazolium chloride. The product was characterized by means of X-ray powder diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). It was found that micro-scaled CaMoO4 powders were assembled by nanoparticles with diameters ranging from 10 to 20 nm. The optical absorbance, photoluminescence emission (PL), and luminescence excitation (PLE) were investigated. The PL spectra excited at 273 nm have a strong green emission band maximum at 511 nm, which is attributed to the charge-transfer transitions within the MoO42− complex, and the luminescence intensity indicated a good luminescence quality of the CaMoO4 materials. By varying the amount of this assisted agent, we found that the ionic liquid played a crucial role as a surfactant in the formation of CaMoO4 materials with uniform hierarchical structure, which may be beneficial to the luminescence performance. This study presented a promising preparation strategy towards other luminescent materials.  相似文献   

8.
Functionalized nanoparticles are discussed. Surfaces of CdS:Mn/ZnS core/shell nanospheres (Qdots) were converted from hydrophobic to hydrophilic by growth of a SiO2 shell. The colloidal dispersion was stabilize by adding a surfactant with a negative surface charge, and a cell-penetrating-peptide, TAT, was attached through a primary amine group. The TAT functionalized Qdots were shown to pass the blood-brain-barrier and luminescence in the infused half of the brain.In addition, nanorods of S2− rich CdS were synthesized by reaction of excess S with Cd precursors in the presence of ethylene diamine. The photoluminescence (PL) peak from the S2− rich CdS nanorods was broad with a maximum at ∼710 nm, which was 40 nm longer in wavelength than the PL peak from Cd2+ rich CdS (∼670 nm) nanorods. The influence of surface electron or hole trap states on the luminescent pathway of CdS nanorods were used to explain these shifts in wavelength. Nanocrystals of Au with ∼2 nm diameters were grown on S2− rich surfaces of CdS nanorods. Significant quenching of photoluminescence was observed from Au nanocrystals on CdS nanorods due to interfacial charge separation. Charge separation by Au nanocrystals on CdS resulted in enhanced UV photocatalytic degradation of Procion red mix-5B (PRB) dye in aqueous solution.  相似文献   

9.
The infrared (IR) photoluminescence (PL) emission of spark-processed silicon (sp-Si) was investigated. A broad and strong room temperature PL peak in the 945 nm (1.31 eV) spectral range was observed when sp-Si was excited with an argon laser. This peak is different from the PL commonly reported for anodically etched porous silicon and other silicon-based materials. The PL intensity increases substantially after annealing sp-Si between 350 and 500 °C in air after which it decreases again. The PL wavelength is observed to peak at 1010 nm by annealing sp-Si near 450 °C. It was further found that the most efficient PL occurs for a Si/O ratio of 0.3, for a small spark gap of about 1 mm, and for spark-processing times in the 15-60 min range.A model for the IR PL is proposed which mirrors that for visible PL. Specifically, it is proposed that the electrons which have been pumped by the laser from the ground state into a broad quasi-absorption band (or closely spaced absorption lines between 1.7 and 2.3 eV) revert back to lower IR levels at 1.31 eV by a non-radiative transition from where they revert radiatively to the ground state by emitting the observed 945 nm light.  相似文献   

10.
The composite of aluminum-substituted mesoporous silica (Al-HMS) molecular sieve coupled with CdS (CdS/Al-HMS) was prepared by template, ion exchange and sulfurization reactions. The result of low angle XRD patterns showed that the low content of 2.5 wt% CdS is incorporated inside Al-HMS channels. The results of diffuse reflectance UV-visible spectra and fluorescence emission spectra exhibited that the absorption edge and photoluminescence peak for CdS/Al-HMS are blue-shifted about 75 nm and 40 nm in comparison to bulk CdS, respectively. The activities of hydrogen production by photocatalytic degradation of formic acid were evaluated under visible light irradiation (λ ≥ 420 nm) and the CdS/Al-HMS loaded 0.07 wt% Ru showed the highest H2 evolution at a rate of 3.7 mL h−1 with an apparent quantum yield of 1.2% at 420 nm.  相似文献   

11.
Photoluminescence (PL) properties of 3-mercaptopropionic acid (MPA) coated CdTe/CdS core-shell quantum dots (QDs) in aqueous solution in the presence of ZnO colloidal nanocrystals were studied by steady-state and time-resolved PL spectroscopy. The PL quenching of CdTe/CdS core-shell QDs with addition of purified ZnO nanocrystals resulted in a decrease in PL lifetime and a small red shift of the PL band. It was found that CdTe(1.5 nm)/CdS type II core-shell QDs exhibited higher efficiency of PL quenching than the CdTe(3.0 nm)/CdS type I core-shell QDs, indicating an electron transfer process from CdTe/CdS core-shell QDs to ZnO nanocrystals. The experimental results indicated that the efficient electron transfer process from CdTe/CdS core-shell QDs to ZnO nanocrystals could be controlled by changing the CdTe core size on the basis of the quantum confinement effect.  相似文献   

12.
掺杂Mn2+的浓度对CdS纳米颗粒光致发光的影响   总被引:2,自引:2,他引:0  
采用反胶束法,合成了硅土包裹的掺有不同浓度的Mn2 的CdS纳米颗粒.高分辨电镜表明这些颗粒的直径小于5 nm.仅仅改变Mn2 的掺杂浓度,研究了这些颗粒的光致发光谱和光致发光激发谱,结果表明:Mn2 浓度的大小对掺杂CdS纳米颗粒的发光产生了重要的影响.通过电子顺磁共振谱的测量和分析揭露了Mn2 浓度影响这些掺杂颗粒发光效率的原因.  相似文献   

13.
CdS nanocrystals were prepared by a simple one-step aqueous synthesis method using thioglycolic acid (TGA) as the capping molecule, and characterized by X-ray powder diffraction (XRD), UV-vis absorption spectra and photoluminescence (PL) emission spectroscopy. The effects of both TGA/Cd and Cd/S molar ratio on the surface-defect-state PL intensity of CdS nanocrystals have been investigated. It was found that all of the as-prepared CdS nanocrystals showed a strong broad emission in the range of 450-700 nm centered at 560 nm, which was attributed to the recombination of an electron trapped in a sulfur vacancy with a hole in the valance band of CdS. The surface-defect-states emission intensity of CdS nanocrystals significantly increased with the increase of Cd/S molar ratio, and showed a maximum when Cd/S molar ratio was 2.0. If Cd/S molar ratio continued to increase, namely more than 2.0, the surface-defect-states emission intensity would decrease. It was found that the surface-defect-states emission intensity increased with the increase the TGA/Cd molar ratio, and showed a maximum when the TGA/Cd molar ratio was equal to 1.8, and a further increase of the TGA/Cd molar ratio would lead to the decrease of the surface-defect-states emission intensity.  相似文献   

14.
This paper reports the luminescence properties of spark-processed Si (sp-Si) prepared with different atmospheres such as air, O2, and N2 in low vacuum range (50-760 Torr). Three main luminescence bands are observed from spark-processed Si (sp-Si). In addition to the well-known two luminescence bands in the blue/violet peaking at 410 nm and green peaking at 500 nm, a novel UV luminescence band is detected for the sp-Si prepared in N2. The temperature dependence of photoluminescence (PL) characteristics of the newly detected UV luminescence band is examined. Further studies of photoluminescence excitation (PLE) have been performed and origins of luminescence are discussed based on the experimental results.  相似文献   

15.
Photoluminescence (PL) of the anodic alumina has been studied and related with quality of hexagonal ordering of the pores. The photoluminescence excitation (PLE) spectra have been successfully de-convoluted into primarily two sub-bands with peak positions at about 355 and 395 nm and maximum emission at about 450 and 500 nm, respectively; the former being assigned to F+ centers and the latter to the F-centers. A red shift in the PLE takes place, at a given anodizing voltage, when the quality of the hexagonal pore ordering deteriorates with an increase in number density of defects, i.e., pentagons and hexagons with missing pores. The metallic hills at these defects change the curvatures of the metal-oxide and the oxide-electrolyte interfaces that could affect the field distribution and hence the stress-state and other characteristics of the oxide at the defects. This allows a comparatively larger concentration of F centers (395 nm band), causing a red shift in the PLE with increase in defect density.  相似文献   

16.
The microwave (MW) assisted synthesis of thiol capped cadmium sulfide (CdS) nanocrystallites/quantum dots (QDs) was performed through the reaction of cadmium acetate with thiourea in N,N-dimethylformamide (DMF) by keeping the MW irradiation time fixed (40 s) in the presence of a thiol containing capping agent. Three capping agents, namely, benzyl mercaptan (BM), 1-butanethiol (BT) and 2-mercaptoethanol (ME) were used. The concentration of the precursors was varied to check the change in the average size of the thiol capped CdS nanocrystals formed. The nanocrystallites were characterized by usual procedure. The UV-vis absorption spectra and the photoluminescence (PL) spectra of the CdS nanocrystalline powders dispersed in DMF were studied. It was observed that with increase in concentration of the capping agent (BM), there is a shift in the nature of emission (PL) from trap associated PL to the band edge luminescence in the case of BM capped CdS nanocrystalline powders dispersed in DMF possibly due to better surface passivation. The relative PL quantum yield of the thiol capped CdS nanocrystalline powders dispersed in DMF was calculated under various experimental conditions. Time-correlated single-photon counting experiments were performed to study the time-resolved photoluminescence of the CdS nanocrystalline powders dispersed in DMF. The observed emission decay profiles have been simulated using the multiexponential model. The emission decay profiles for thiol capped CdS nanocrystalline powders dispersed in DMF depend on the nature of the capping agents (thiols) used to passivate the CdS nanocrystallites. The time resolved PL studies show that the average values of PL lifetime are related to the size and size distribution of the prepared thiol capped CdS nanocrystallites.  相似文献   

17.
In the present study we have synthesized CdS semiconducting quantum dots by the chemical precipitation method using Thioglycerol as the capping agent. X-ray powder diffraction (XRD) and transmission electron microscopy (TEM) are employed to characterize the size, morphology and crystalline structure of the as-prepared material. The synthesized QPs have a mixture of cubical and hexagonal crystal symmetry with 12 nm average diameter. Ultraviolet-visible (UV-vis) absorption spectroscopy is used to calculate the band gap of the material and blue shift in absorption edge. Confinement of the optical phonon modes in the QPs is studied by Raman spectroscopy, while FTIR for identification of chemical bonds in the nanomaterial. Multiple cadmium and sulphur defects were observed by employing the photoluminescence (PL) method.  相似文献   

18.
+ -implanted SiO2 films is studied as a function of different fabricating conditions (implantation dose, annealing temperature and time). The SiO2 films containing Ge nanocrystals exhibit two photoluminescence (PL) bands peaked at 600 nm and 780 nm. There are two excitation bands in the PL excitation (PLE) spectra. With variation in Ge nanocrystal size, the PL and PLE peak energies show no appreciable shift. The PL and PLE spectral analyses suggest that during the PL process, electron–hole pairs are generated by the E(l) and E(2) direct transitions inside Ge nanocrystals, which then radiatively recombine via luminescent centers in the matrix or at the interface between the nanocrystal/matrix. Received: 27 January 1998/Accepted: 18 March 1998  相似文献   

19.
用Ti/sapphire飞秒激光系统产生的100fs、800nm激光对置于水中的CdS体相材料进行烧蚀,得到了水溶性CdS纳米粒子。这种纯物理过程保证了无污染的制备环境,从而保证了所合成材料的纯洁性。通过透射电子显微镜、紫外/可见/近红外吸收光谱、室温光致发光谱的方法对CdS量子点的形貌及其光学性质进行了表征。结果表明:利用飞秒激光烧蚀法所制备的CdS量子点可直接分散在水中而且具有粒径小、分布均匀的特点;同时具有较好的胶体稳定性,可在空气中稳定存放6个月以上。飞秒激光烧蚀法所制备的CdS量子点所具有的这些性质使其在生物标记领域引起极大的兴趣,而且也为纳米材料的制备提供了新的思路。  相似文献   

20.
The photoluminescence (PL) properties of high quality ZnO thin films grown on Si (1 0 0) substrates using spin coating technique are investigated as a function of temperature in the range 10-300 K. The PL spectra shows dominant donor bound excitonic emission along with free exciton related emission in the UV region. The corresponding activation energy of thermal quenching is found to be . The parameters that describe the temperature dependent red shift of the band-edge transition energy are evaluated using different models. The broadening of the PL peak due to increase in temperature is mainly attributed to the exciton-LO phonon coupling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号