首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This article reports on the electronic structure at interfaces found in organic semiconductor devices. The studied organic materials are C60 and poly (para‐phenylenevinylene) (PPV)‐like oligomers, and the metals are polycrystalline Au and Ag. To measure the energy levels at these interfaces, ultraviolet photoelectron spectroscopy has been used. It is shown how the energy levels at interfaces deviate from the bulk. Furthermore, it is demonstrated that the vacuum levels do not align at the studied interfaces. The misalignment is caused by an electric field at the interface. Several effects are presented that influence the energy alignment at interfaces, such as screening effects, dipole layer formation, charge transfer, and chemical interaction. The combination of interfaces investigated here is similar to interfaces found in polymer light‐emitting diodes and organic bulk heterojunction photovoltaic devices. The result, the misalignment of the vacuum levels, is expected to influence charge‐transfer processes across these interfaces, possibly affecting the electrical characteristics of organic semiconductor devices that contain similar interfaces. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 2549–2560, 2003  相似文献   

2.
The aim of this work has been to study the influence of modified hole‐extraction layers on the performance of organic solar cells (OSCs) based on blends of poly (3‐hexylthiophene) and [6,6]‐phenyl‐C61‐butyric acid methyl ester. The hole‐extraction layers consist of poly (3,4‐ethylene dioxythiophene):polystyrene sulfonic acid (PEDOT:PSS) doped with different concentrations of bromine. Compared with pristine OSC without adding bromine to the hole‐extraction layer, the bromine‐doped OSCs show a 49% increase in the power conversion efficiency (from 2.12 to 3.16%), which could be attributed to the increase of electrical and optical properties of PEDOT:PSS films after the addition of bromine. © 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 50: 125–128, 2012  相似文献   

3.
The electronic structure of the interface between ferromagnetic cobalt and the organic semiconductors copper- (CuPc) and iron-phthalocyanine (FePc) was investigated by means of photoemission spectroscopy (UPS, IPES, and XPS). These metal-phthalocyanine (MePc) molecules have an open shell structure and are known to show promising properties for their use in organic spintronics. In spintronic devices, the interface between ferromagnetic electrode and the organic layer determines the spin injection properties and is hence important for the quality of, e.g., a possible spin-valve device. For this purpose, cobalt was deposited onto the MePcs, such as in devices with ferromagnetic top contacts. The reported investigations reveal a diffusion of cobalt into the organic layers and chemical reactions at the interface.  相似文献   

4.
Neural implants are technical systems that restore sensory or motor functions after injury and modulate neural behavior in neuronal diseases. Neural interfaces or prostheses have lead to new therapeutic options and rehabilitation approaches in the last 40 years. The interface between the nervous tissue and the technical material is the place that determines success or failure of the neural implant. Recording of nerve signals and stimulation of nerve cells take place at this neuro‐technical interface. Polymers are the most common material class for substrate and insulation materials in combination with metals for interconnection wires and electrode sites. This work focuses on the neuro‐technical interface and summarizes its fundamental specifications first. The most common polymer materials are presented and described in detail. We conclude with an overview of the different applications and their specific designs with the accompanying manufacturing processes from precision mechanics, laser structuring and micromachining that are introduced in either the peripheral or central nervous system. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2010  相似文献   

5.
The field of organic thin films and devices is progressing at an extremely rapid pace. Organic–metal and organic–organic interfaces play crucial roles in charge injection into, and transport through, these devices. Their electronic structure, chemical properties, and electrical behavior must be fully characterized and understood if the engineering and control of organic devices are to reach the levels obtained for inorganic semiconductor devices. This article provides an extensive, although admittedly nonexhaustive, review of experimental work done in our group on the electronic structure and electrical properties of interfaces between films of π‐conjugated molecular films and metals. It introduces several mechanisms currently believed to affect the formation of metal–organic interface barriers. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 2529–2548, 2003  相似文献   

6.
With the prospect of extremely fast manufacture of very low cost devices, organic electronics prepared by thin film processing techniques that are compatible with roll‐to‐roll (R2R) methods are presently receiving an increasing interest. Several technologies using organic thin films are at the point, where transfer from the laboratory to a more production‐oriented environment is within reach. In this review, we aim at giving an overview of some of the R2R‐compatible techniques that can be used in such a transfer, as well the current status of R2R application within some of the existing research fields such as organic photovoltaics, organic thin film transistors, light‐emitting diodes, polymer electrolyte membrane fuel cells, and electrochromic devices. © 2012 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2012  相似文献   

7.
The successful thin‐film deposition of a pyrene‐substituted nitronyl nitroxide radical under controlled conditions has been demonstrated. The electronic properties, chemical environment at the interface, and morphology of the thin films have been investigated by a multitechnique approach. Spectroscopic and morphological analyses indicate a Stranski–Krastanov growth mode and weak physisorption of molecules onto the metallic surface. Electron spin resonance (ESR) spectroscopy shows that evaporation processes and deposition do not affect the paramagnetic character of the molecules. Useful concepts for the engineering of new, purely organic‐based magnets, which may open the way to fruitful exploitation of organic molecular‐beam deposition for assembly on solid surfaces in view of future technological applications, are presented.  相似文献   

8.
The reliable information about interface energetics of organic materials, especially the energy level alignment at organic heterostructures is of pronounced importance for unraveling the photon harvesting and charge separation process in organic photovoltaic(OPV) cells. This article provides an overview of interface energetics at typical planar and mixed donor-acceptor heterostructures, perovskite/organic hybrid interfaces, and their contact interfaces with charge collection layers. The substrate effect on energy level offsets at organic heterostructures and the processes that control and limit the OPV operation are presented. Recent efforts on interface engineering with electrical doping are also discussed.  相似文献   

9.
Electrostatic phenomena occurring at the interface between metal/organic and organic/organic materials are discussed from the viewpoint of dielectrics physics. Focusing on two important origins of surface polarization phenomena, orientational ordering of polar molecules and displacement of excess charges at the interface, surface polarization phenomena of organic thin films are discussed. To define the orientational order of polar molecules, orientational order parameters are introduced, and surface polarization due to the alignment of dipoles is expressed. The generation of Maxwell displacement current (MDC) and optical second harmonic generation (SHG) that are specific for surface organic monomolecular films are discussed, and some experimental evidence are shown. As an extension of the concept of surface Fermi level introduced to discuss the electrostatic phenomena due to electron transfer at the interface between metal-organic insulators, the surface Fermi level is extended to the discussion on the electrostatic phenomena of organic semiconductor materials on metals. In this paper, some experimental evidence of surface polarization originating from polar molecules and displacement of excess charges are shown. After that, with consideration of these surface phenomena, single electron tunneling of organic films are briefly discussed in association with surface polarization phenomena.  相似文献   

10.
The molecular structures of the interfaces between a solid poly(4‐vinyl pyridine) (P4VP) surface and poly(acrylic acid) (PAA) as well as hydrochloric acid (HCl) solutions were probed using sum frequency generation (SFG) vibrational spectroscopy in situ in real time. Spectroscopic results clearly reveal that the PAA molecules are adsorbed onto the P4VP surface via hydrogen bonding at the P4VP/PAA solution interface while the P4VP surface is protonated at the P4VP/HCl solution interface. Consequently, the water molecules near the interfaces are strongly perturbed by these two interactions, exhibiting different orderings at the two interfaces. This work clearly demonstrates the power of studying the interfacial molecular‐level structures via nonlinear vibrational spectroscopy when molecular adsorption happens at the solid–liquid interface and paves a way for our future study on tracing the adsorption dynamics of polymer chains onto solid surfaces. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 848–852  相似文献   

11.
Polymer solar cell (PSC) has been developed vastly in the past decade due to the advantages of low cost, lightweight, mechanical flexibility, versatility of chemical design and synthesis, semitransparency, and solution processing. The performance and lifetime of PSCs are highly dependent on the properties of both active materials and their interfaces. The combination of the versatility of organic chemistry and the multitude of well-understood ligand–metal interactions allows self-assembled monolayers (SAMs) of organic molecules to direct control over the electronic and chemical properties at the inorganic–organic interfaces. Thus, SAMs are an attractive pathway to reconcile interfaces with tunable interface properties in PSCs. Hence, this review describes the application of SAMs in PSCs at different interfaces. First, SAMs as alternatives of traditional transporting materials to reduce the barrier at indium tin oxide (ITO)/active layer interface due to the ability of tuning work function of ITO electrode are discussed. Second, the modifications of metal oxide by SAMs to control the electrical contacts at transporting layer/active layer interface are described. Third, tailoring the properties of the donor/acceptor interface by SAMs to improve the performance of PSCs are summarized. Finally, perspectives and challenges are pointed out for developing highly stable and high-performance PSCs by applying SAMs.  相似文献   

12.
Controllable synthesis of novel sandwiched polyaniline (PANI)/ZnO/PANI free‐standing nanocomposite films is reported via spin coating of ZnO quantum‐dot interlayer on PANI base layer and then PANI surface layer on the ZnO interlayer. The thickness of the ZnO interlayer and the PANI surface layer can be easily controlled by adjusting spin time and spin speed, respectively. The effects of the ZnO interlayer thickness and the PANI surface layer thickness are examined in detail on the photoluminescence (PL) property. It is worth noting that coverage of the PANI surface layer on the ZnO interlayer can not only lead to great enhancement in the PL property but also to a maximum PL intensity at a medium PANI surface layer thickness. This maximum PL property is caused by the combined ZnO/PANI carrier transportation and PANI shielding effects. In addition, the nanocomposite films show reasonably good conductivity. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

13.
In this work, we report a Kelvin probe microscopy investigation on the structural and electronic properties of gold and aluminum thin films evaporated on poly(3‐octyl‐thiophene) films. Our experimental setup allows us to perform scanning force microscopy (SFM) studies of the same area even if the sample is taken out of the SFM system for different processes (Au and Al evaporation). This allows a detailed study of the effect of adsorbed metal particles on the morphology and electrical properties of polymer thin films at the nanoscale. We found different behavior for both metals in morphology and electrical properties at the interface. These results can contribute to explain what happens at the metal–polymer interface of the devices when the metal contacts are grown. Thereby the observed nanoscale structural changes can be correlated with the overall performance of the fabricated devices. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2014 , 52, 1083–1093  相似文献   

14.
Understanding the nature of the adhesion of an organic liquid on a metal surface is of paramount importance for elucidating the stability and chemical reactivity at these complex interfaces. However, to date, the morphology, layering and chemical properties at organic liquid metal interfaces have been rarely known. Using semi-empirical dispersion corrected density functional theory calculations and ab initio molecular dynamics simulations, we show that carbon tetrachloride and ethanol films confined to a platinum surface alter their intrinsic properties and exhibit interfacial reactivity. A few interface carbon tetrachloride (ethanol) molecules adsorb dissociatively (molecularly) on platinum thanks to the surrounding medium. The adsorption strength of the interfacial molecules is consequently increased in the condensed phase as compared to the gas phase. This remarkable effect is rationalized by an interaction energy decomposition model and an electrostatic potential analysis.  相似文献   

15.
The spin–spin interactions between chiral molecules and ferromagnetic metals were found to be strongly affected by the chiral induced spin selectivity effect. Previous works unraveled two complementary phenomena: magnetization reorientation of ferromagnetic thin film upon adsorption of chiral molecules and different interaction rate of opposite enantiomers with a magnetic substrate. These phenomena were all observed when the easy axis of the ferromagnet was out of plane. In this work, the effects of the ferromagnetic easy axis direction, on both the chiral molecular monolayer tilt angle and the magnetization reorientation of the magnetic substrate, are studied using magnetic force microscopy. We have also studied the effect of an applied external magnetic field during the adsorption process. Our results show a clear correlation between the ferromagnetic layer easy axis direction and the tilt angle of the bonded molecules. This tilt angle was found to be larger for an in plane easy axis as compared to an out of plane easy axis. Adsorption under external magnetic field shows that magnetization reorientation occurs also after the adsorption event. These findings show that the interaction between chiral molecules and ferromagnetic layers stabilizes the magnetic reorientation, even after the adsorption, and strongly depends on the anisotropy of the magnetic substrate. This unique behavior is important for developing enantiomer separation techniques using magnetic substrates.  相似文献   

16.
The knowledge of the structure and orientation of polymer chains adsorbed at an interface could be of major importance to predict the level of interfacial interactions and adhesion that depend strongly on the properties of the interface formed between the two materials (polymer and substrate) brought into contact. In this work, we were interested to study thin films of atactic polystyrene after adsorption (spin‐coating) on two chemically different substrates (inert and OH‐grafted gold substrates). The main aim is to analyze the resulting anisotropy due to the confinement in a quasi‐bidimensional geometry, as well as to investigate the incidence of the interfacial interactions, potentially established between the polymer and the surface, on the chain organization. Our infrared spectroscopy results allowed us to access the adsorption model of polystyrene chains and to highlight the relation between chain orientation and interfacial acid–base interactions. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 1268–1276, 2006  相似文献   

17.
A new matrix system for phosphorescent organic light‐emitting diodes (OLEDs) based on an electron transporting component attached to an inert polymer backbone, an electronically neutral co‐host, and a phosphorescent dye that serves as both emitter and hole conductor are presented. The inert co‐host is used either as small molecules or covalently connected to the same chain as the electron‐transporting host. The use of a small molecular inert co‐host in the active layer is shown to be highly advantageous in comparison to a purely polymeric matrix bearing the same functionalities. Analysis of the dye phosphorescence decay in pure polymer, small molecular co‐host film, and their blend lets to conclude that dye molecules distribute mostly in the small molecular co‐host phase, where the co‐host prevents agglomeration and self‐quenching of the phosphorescence as well as energy transfer to the electron transporting units. In addition, the co‐host accumulates at the anode interface where it acts as electron blocking layer and improves hole injection. This favorable phase separation between polymeric and small molecular components results in devices with efficiencies of about 47 cd/A at a luminance of 1000 cd/m2. Investigation of OLED degradation demonstrates the presence of two time regimes: one fast component that leads to a strong decrease at short times followed by a slower decrease at longer times. Unlike the long time degradation, the efficiency loss that occurs at short times is reversible and can be recovered by annealing of the device at 180 °C. We also show that the long‐time degradation must be related to a change of the optical and electrical bulk properties. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

18.
We investigated the lasing properties of optically pumped polymer films. Amplified spontaneous emission (ASE) around 400 nm was observed in polymer films of polystyrene (PS) and poly(N‐vinylcarbazole) (PVK) doped up to 20% with the hole‐transporting organic molecule N,N′‐bis(3‐methylphenyl)‐N,N′‐diphenylbenzidine (TPD). Thus, TPD‐based films are candidates for blue‐emitting organic diode lasers. Films containing several semiconducting organic molecules and polymers and rare‐earth complexes were also investigated. Energy transfer was observed in PVK films doped with various europium and samarium complexes. PS films containing the electron‐transporting organic molecule 2‐(4‐biphenylyl)‐5‐(4‐tert‐butylphenyl)‐1,3,4‐oxadiazole and small amounts of TPD also showed energy transfer to the europium complexes, but not to the samarium ones. None of these films demonstrated ASE; therefore, they are not appropriate for lasing purposes. However, because rare‐earth ions have very sharp emission spectra, these materials are candidates for very monochromatic light‐emitting diodes. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 2706–2714, 2003  相似文献   

19.
Although the fabrication procedures for bulk heterojunction (BHJ) solar cells are routinely optimized to accommodate new organic materials, the influence of solvent properties and cohesive forces on the film‐forming process and the self‐assembly of donor and acceptor molecules on the nanoscale are poorly understood. In this study, we measure the solubility of a variety of organic semiconductors in a range of solvents and calculate cohesive forces including dispersion forces, dipole interactions, and hydrogen bonding via Hansen Solubility Parameters (HSPs). HSPs were calculated by measuring the solubilities of various organic semiconductors in 27 solvents and the influence of solvent identity on film morphology of different BHJ mixtures was explored via atomic force microscopy (AFM). The possibility of correlations between HSPs and film morphology was considered; however, it is apparent that the HSP values alone do not play a critical role in determining the morphology of the films of conjugated polymers and molecules. This collection of solubility data constitutes the first of its type for organic semiconducting materials, and may act as a useful reference for the organic semiconductor community to aid in the understanding and selection of solvents for donor–acceptor BHJ mixtures. © 2012 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2012  相似文献   

20.
In many organic electronic devices functionality is achieved by blending two or more materials, typically polymers or molecules, with distinctly different optical or electrical properties in a single film. The local scale morphology of such blends is vital for the device performance. Here, a simple approach to study the full 3D morphology of phase‐separated blends, taking advantage of the possibility to selectively dissolve the different components is introduced. This method is applied in combination with AFM to investigate a blend of a semiconducting and ferroelectric polymer typically used as active layer in organic ferroelectric resistive switches. It is found that the blend consists of a ferroelectric matrix with three types of embedded semiconductor domains and a thin wetting layer at the bottom electrode. Statistical analysis of the obtained images excludes the presence of a fourth type of domains. The criteria for the applicability of the presented technique are discussed. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 1231–1237  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号