首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
P Chakraborty 《Pramana》1998,50(6):617-640
Secondary ion mass spectrometry (SIMS) is a technique based on the sputtering of material surfaces under primary ion bombardment. A fraction of the sputtered ions which largely originate from the top one or two atomic layers of the solid is extracted and passed into a mass spectrometer where they are separated according to their mass-to-charge ratios and subsequently detected. Because the sputter-yields of the individual species, coupled with their ionization probabilities, can be quite high and the mass spectrometers can be built with high efficiencies, the SIMS technique can provide an extremely high degree of surface sensitivity. Using a particular mode like static SIMS where a primary ion current is as low as 10?11 amp, the erosion rate of the surface can be kept as low as 1 Å per hour and one can obtain the chemical information of the uppermost atomic layer of the target. The other mode like dynamic SIMS where the primary ion current is much higher can be employed for depth profiling of any chemical species within the target matrix, providing a very sensitive tool (~ 1 ppm down to ppb) for quantitative characterization of surfaces, thin films, superlattices, etc. The presence of molecular ions amongst the sputtered species makes this method particularly valuable in the study of molecular surfaces and molecular adsorbates. The range of peak-intensities in a typical SIMS spectrum spans about seven to eight orders of magnitude, showing its enormously high dynamic range; an advantage in addition to high sensitivity and high depth-resolution. Furthermore, the high sensitivity of SIMS to a very small amount of material implies that this technique is adaptable to microscopy, offering its imaging possibilities. By using this possibility in static SIMS or dynamic SIMS mode of analysis, one can obtain a two-dimensional (2D) surface mapping or a three-dimensional (3D) reconstruction of the elemental distribution, respectively within the target matrix. Secondary ion yields for elements can differ from matrix to matrix. These sensitivity variations pose serious limitations in quantifying SIMS data. Various methods like calibration curve approach, implantation standard method, use of relative sensitivity factor, etc. are presently employed for making quantitative SIMS analysis. The formation of secondary ions by ion bombardment of solids is relatively a complex process and theoretical research in this direction continues in understanding this process in general. The present paper briefly reviews the perspective of this subject in the field of materials analysis.  相似文献   

2.
Despite its great sensitivity, the usefulness of secondary ion mass spectrometry (SIMS) for many applications has been limited by an inadequate understanding of the probability of sputtering an atom in an ionized state. To determine this ionization probability for clean Cu and Ni surfaces, I have measured the energy distribution of sputtered neutrals and ions by quadrupole mass filtering and retarding potential analysis using potential modulation differentiation. Analysis of sputtered neutrals was accomplished by electron impact ionization. Because the neutrals outnumber the ions by at least two orders of magnitude, the ratio of sputtered ions to neutrals is an accurate measure of the ionization probability. For energies below 20 eV the dependence of the ionization probability on energy goes as P(E) α En, where n = 0.65 for clean Cu. The absorption of oxygen on the Cu surface increases the total ion yield while causing a reduction in the value of the exponent n. Similar results are found for nickel, where n = 0.54 for the clean surface.  相似文献   

3.
During analysis with SIMS (secondary ion mass spectroscopy) a HeNe laser beam was focussed on the sample surface. While sputtering Si with oxygen ions, the laser irradiation produced a strong increase of the target current and the SIMS intensities as well. This was found for lightly p-doped Si only, whereas no effect was observed for highly p-doped or n-doped Si. To explain this we assume that a depletion layer exists under the surface oxide layer and free charged carriers are created therein by laser excitation. The laser induced effects observed in the SIMS intensity or the target current can be used for measuring the profile of an ion beam or for measuring the alignment of an ion beam at a laser marked target. In addition, laser irradiation combined with SIMS allows one to measure qualitatively both the profile of the doping impurity and its electrically active part.  相似文献   

4.
In the Secondary Ion Mass Spectrometry (SIMS) the sample to be analysed is bombarded with a beam of primary ions. The secondary ions sputtered away from the sample, characteristic for its composition near the surface at any time, are mass selected and detected in a mass spectrometer. The yields of several elements in a Fe-matrix and in technically pure samples bombarded with positive oxygen and argon ions have been determined to study the influence of the matrix and the primary ions on the ion yields. The properties of SIMS and of two of its special modes viz. Static Secondary Ion Mass Spectrometry (SSIMS) and Secondary Ion Imaging Mass Spectrometry (SIIMS) with respect to the analysis of surface layers are discussed.  相似文献   

5.
The physical and chemical properties of a solid surface are determined by its uppermost monolayers. Besides other methods like Auger electron spectroscopy (AES) and X-ray electron spectroscopy (ESCA) for example, the chemical composition of these uppermost monolayers can be investigated by the statical method of secondary ion mass spectroscopy (SIMS). In this method a relatively large target area (0.1 cm2) is bombarded with a small primary ion current density (10?9 A cm?2). Thus a sputtering time of several hours is achieved for an individual monolayer. A mass analysis of the emitted positive and negative secondary ions gives information about the chemical composition of the uppermost monomolecular layer of the bombarded surface. Important features of SIMS are: detection of chemical compounds; isotope sensitivity; detection of hydrogen and its compounds ; depth resolution in the range of a single monolayer ; low detection limits (< 10?6 monolayer or < 10?14 g) for many elements and compounds.The capacity of this method is demonstrated using as examples the initial surface oxidation of metals and semiconductors and adsorption phenomena on clean metal surfaces. In some special cases additional information on the chemical composition of the uppermost monolayer can be obtained by the electron induced ion emission from the surface.  相似文献   

6.
In this paper, we present experimental data for SIMS analysis of residual gas elements (RGEs) with a Cameca IMS-6f ion microprobe. We considered a simple experimental technique, which provides an effective separation of the secondary ions, sputtered from the bulk of a target, and from the molecules, adsorbed on the analyzed surface from the residual atmosphere. The technique needs the sputtering yield of one monolayer (ML) per second to be applied. The method improves (in more than one order of magnitude) the detection limit for RGEs in SIMS analysis, and simultaneously, provides information about the residual atmosphere at the sample surface and in the main chamber of the experimental instrument. The method provides a calibration method for an ion gauge, and can be used for SIMS analysis with a gas (O2) flooding.  相似文献   

7.
The process by which atoms are ionized as they are sputtered from a metal surface has been analyzed both theoretically and experimentally. In the theoretical part the expressions for ionization coefficient R+ of atoms having the ionization energy much larger than the metal work function have been derived using a molecular orbital method. The effect of the level crossing was estimated in an approximate way. In the experimental part the SIMS experiments on clean Ni and Al surfaces and on Ni surface covered with a submonolayer of adsorbed K, Na and Al are reported. It has been found and it is for the first time reported that the energy distribution of ions sputtered from a submonolayer of adatoms is independent of energy (200–2500 eV) and mass (Ar+ Xe+ of incident ions and depends only upon the adsorption energy of the adatom. The energy distribution of ions sputtered from bulk samples has been found dependent on the primary ion energy. The measurement of the absolute value of R+ has shown that there is a strong correlation between the number of the adatom valence d-electrons and the value of R+, the value of R+ being smaller for atoms with more d-electrons. These experimental data have been compared with the theoretical expressions and the important role of the mechanism which takes into account the bending of the adatom energy level has been assessed.  相似文献   

8.
In this study we have investigated how the probability of ionization of sputtered Si atoms to form negative ions depends on the energy of the atoms. We have determined the ionization probability from experimental SIMS energy distributions using a special experimental technique, which included de-convolution of the energy distribution with an instrumental transmission function, found by separate measurements.We found that the ionization probability increases as a power law ∼E0.677 for particles sputtered with energies of 0-10 eV, then becomes a constant value (within the limits of experimental error) for particles sputtered with energies of 30-100 eV. The energy distributions of Si ions, measured under argon and cesium ion sputtering, confirmed this radical difference between the yields from low and high-energy ions.To explain these results we have considered ionization mechanisms that are different for the low energy atoms (<10 eV) and for the atoms emitted with higher energy (>30 eV).  相似文献   

9.
We report on emission processes induced by particle-solid interaction involving ions with a large potential (i.e., high ion charge state) and low kinetic energy. After an introduction into existing neutralization models for ion scattering at a metal surface a detailed discussion on the electron emission processes is presented.The number of electrons emitted per incident ion is shown to be proportional to the potential energy only within a restricted parameter field involving charge state and ion velocity. The kinetic energy distribution of emitted electrons is dominated by low-energetic electrons (30 eV), while inner shell holes of the projectile ion can initiate high-energetic characteristic Auger electrons. The presence of inner shell holes is also of importance for the charge state of highly charged ions being scattered at surfaces whereas normally the charge state distribution of scattered ions depends on the impact parameter only.The influence of the primary ion charge state on the sputtering yield of insulating surfaces is seen for the charge state of sputtered particles, whereas the total sputtering yield seems to be insensitive. This question is still subject to controversy, however.Photon emission dependent on the charge state of the impinging ion has been observed up to now only for extremely highly charged ions as hydrogenlike Ar or Kr.  相似文献   

10.
The dependence of Auger depth resolution and surface texturing on primary ion species was systematically investigated for polycrystalline Al, Mo, Ag and Ta films deposited on Si wafers, using 3 keV Ne+, Ar+ and Xe+ ions as projectiles. The resolution was found to depend strongly on ion species; the higher the ion mass, the better the resolution. The resolution improvement attained with Xe+ ions was dramatic for Al, becoming less pronounced for higher mass targets. As revealed by high-resolution scanning electron microscopy, Xe+ sputtering led to less-developed topographical structures of sputtered areas, which allowed us to conclude that ion sputtering with heavier ions roughens the surface less, resulting in a marked improvement in resolution.  相似文献   

11.
The application of a retarding-dispersive energy analyzer as the pre-filter of a quadrupole mass analyzer has made it possible to combine a standard high-speed Secondary Ion Mass Spectrometer (SIMS) and a high-resolution secondary-ion energy analyzer into one instrument. Data taken with this instrument indicate the presence of very significant high-energy tails in the energy distribution of all observed secondary ions, even with relatively low (2 keV) primary ion energies. The shape of the energy distribution varies widely from element to element, for atomic compared to molecular species sputtered from a clean metal surface, and depends, for a given species sputtered from a metal surface, on the degree of surface oxidation. The variations established in the present work are large enough to introduce in many cases substantial discrepancies between published values of both relative ion sputtering yields and surface elemental concentrations and values obtained by considering the complete energy distribution. Methods of obtaining accurate secondary ion yields by integrating the energy distribution are discussed. Work performed under the auspices of the Division of Physical Research of the U.S. Energy Research and Development Administration.  相似文献   

12.
Absolute ionization probabilities R for Ta+ secondary ions are determined both experimentally from comparative in-situ SNMS and SIMS measurements and theoretically on the basis of recent microscopic ionization theories as a function of the oxygen surface concentration cO. The theoretically predicted cO dependence of R for sputtered Ta particles is found to agree well with the experimental results. The comparison between experiment and theory gives quantitative estimates of factors which influence the oxygen induced ion yield enhancement.  相似文献   

13.
Ion-induced secondary electron emission determined via sample current measurements (SCM) was employed as a useful adjunct to conventional secondary ion mass spectrometry (SIMS). This paper reports on the results of 3-6 keV O2+ SIMS-SCM sputter depth profiling through CrN/AlN multilayer coatings on nickel alloy, titanium dioxide films deposited on stainless steel, and corrosion layers formed onto surface of magnesium alloy after long-term interaction with an ionic liquid. For Au/AlNO/Ta films on silicon, in addition to SIMS-SCM profiles, the signal of mass-energy separated backscattered Ne+ ions was monitored as a function of the depth sputtered as well. The results presented here indicate that secondary electron yields are less affected by “matrix effect” than secondary ion yields, and at the same time, more sensitive to work function variations and surface charging effects. SCM depth profiling, with suppression of “the crater effect” by electronic gating of the registration system is capable of monitoring interfaces in the multilayer structure, particularly, metal-dielectric boundaries. In contrast to SIMS, SCM data are not influenced by the angle and energy windows of an analyser. However, the sample current measurements provide lower dynamic range of the signal registration than SIMS, and SCM is applicable only to the structures with different secondary electron emission properties and/or different conductivity of the layers. To increase the efficiency, SCM should be accompanied by SIMS measurements or predetermined by proper calibration using other elemental-sensitive techniques.  相似文献   

14.
Molecular, or static, secondary ion mass Spectroscopy (SIMS) is applied to the detection of organic molecules in amorphous titanium carbide films. The presence of such organic clusters is thought to stabilize the amorphous phase to higher temperatures (>1000°C) and greater thicknesses. The high corrosion resistance properties of the TiC deposits are also attributed to the inclusion of such molecular entities. The processes whereby these molecular entities in the films are transformed into secondary ions during SIMS analysis are also investigated. It is shown that the dominant ionization mechanisms in this case are electron and momentum transfer.  相似文献   

15.
It is important to optimize the resonance ionization efficiency of the sputtered particle by evaluating the internal energy of it. And also the dependence of the change of the internal energy of it on primary ion species and accelerating voltages was investigated. For this study, we developed proto-type resonance laser ionization SNMS instrument, which is a quadrupole SIMS apparatus combined with a wavelength tunable laser. The internal energy of the sputtered aluminum atoms, which has lowly lying excited state (112 cm−1) on the ground state, was monitored. As the results, the internal energy of the sputtered aluminum atoms was not influenced by the change of the surface work function and primary ion beam energy at all. On the contrary, the density on lowly lying excited state drastically increased due to the existence of the oxygen on aluminum surface.  相似文献   

16.
A functionality of the novel black silicon based nanostructured surfaces (BS 2) with different metal surface modifications was tested by time-of-flight secondary ion mass spectrometry (TOF SIMS). Mainly two surface functions were studied: analytical signal enhancement and analyte pre-ionization effect in SIMS due to nanostructure type and the assistance of the noble metal surface coating (Ag or Au) for secondary ion formation. As a testing analyte a Rhodamine 6G was applied. Bi+ has been used as SIMS primary ions. It was found out that SIMS signal enhancement of the analyte significantly depends on Ag layer thickness and measured ion mode (negative, positive). The best SIMS signal enhancement was obtained at BS2 surface coated with 400 nm of Ag layer. SIMS fragmentation schemes were developed for a model analyte deposited onto a silver and gold surface. Significant differences in pre-ionization effects can play an important role in the SIMS analysis due to identification and spectra interpretation.  相似文献   

17.
朱昂如  吴西林 《物理学报》1984,33(10):1475-1479
用能化电子改变样品的表面势,测量多种二次离子产额的能谱,发现在通常条件下,特别当存在氧增强发射时,离子的存活几率不为共振电子隧道效应所影响。动力学参量的数据表明,决定离子产额的表面势是高度局域的。并可推论电子束照射对二次离子质谱的定量分析可起有益的效用。 关键词:  相似文献   

18.
Plasmon peaks along with Auger PLVV peak have been observed in the ultraviolet photoelectron spectra (UPSs) of InP after 5 min of sputtering with 0.5 kV Ar+ ions. Plasmon and Auger peaks are not observed in UPS of un-sputtered InP surface with native oxides of In and P. Filled electron energy levels are not observed near the Fermi level from 5 min sputtered InP surface due to increase of ionization potential of nano In clusters.  相似文献   

19.
In this paper we represent the experimental ionization probability of sputtered silicon atoms as a function of their energy, which has been obtained for positive Si+ ions sputtered from silicon by O2+ ion beam. To explain the experimental data, we have considered ionization of an outgoing atom at a critical distance from the surface, which occurs due to the electron transition between this atom and the surface, and suggested the formation of a local surface charge with the polarity opposite to that of the outgoing ion that has just been formed. Then we have considered the interaction between those two charges, outgoing ion, and surface charge as a process of the particle passage through a spherical potential barrier; as a result, we have obtained the theoretical energy distribution of secondary ions. Together with the well-known Sigmund-Thompson energy distribution of sputtered atoms, the obtained ion energy distribution allowed us to derive the equation for the secondary ion yield versus the sputtered particle energy. Both equations derived have exhibited a quite good correlation with our experimental results and also with a large number of published experimental data.  相似文献   

20.
Secondary ion mass spectrometry (SIMS) is a chemical analysis technique that employs mass spectrometry to analyze solid and low volatility liquid samples [1]. Although there are numerous configurations of SIMS instrumentation, the fundamental basis of SIMS analyses is the measurement of the mass and intensity of secondary ions produced in a vacuum by sputtering the surface of the sample with energetic ion or neutral beams. The sputtering beam is referred to as the primary beam and typically has a kinetic energy of several thousand electronvolts (keV). The primary beam removes atomic or molecular layers at a rate determined principally by the intensity, mass, and energy of the primary species and the chemical and physical characteristics of the sample [2]. Particle sputtering at the kiloelectronvolt level produces a variety of products including electrons, photons, atoms, atomic clusters, intact molecules, and distinctive molecular fragments. A small fraction of these sputter products are ionized, and these ions are the secondary ions in secondary ion mass spectrometry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号