首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The dynamic mechanical properties and morphology of poly(styrene‐co?3‐sulfopropyl sodium‐methacrylate) SSPMANa ionomers were investigated. It was found the increasing rate of ionic moduli of the SSPMANa ionomer was very low, and the cluster Tg of the ionomers remained more or less constant with increasing ion content. A well‐developed SAXS peak was seen for low ion content SSPMANa ionomers and the peak position changed slightly with ion content. Thus, it was suggested that the presence of the alkyl ester side chains made the ion pairs form multiplets more easily at their prevalent distances, and the small‐agglomerated multiplets were dispersed in the polymer matrix relatively evenly. The interpretation of ionic moduli using a number of theories implied that the multiplets and clusters acted as effective crosslinks and filler particles, respectively, and the size and shape of the clusters were irregular. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 1043–1053  相似文献   

2.
Thin films were fabricated layer‐by‐layer (LbL) via ionic bonds formed between a cationic ionomer and an anionic ionomer, which were produced via proton transfer from poly(styrene‐co‐styrenesulfonic acid) to poly(methyl methacrylate‐co‐4‐vinylpyridine) in an organic solvent, tetrahydrofuran. Ionic contents of the ionomers were very low down to 5.6 mol %, much lower than usual polyelectrolytes. The build up of the LbL films was demonstrated by UV/vis spectroscopy: the absorbance of the phenyl rings in styrene residues increased with the number of depositions (thus the number of layers). Transmission electron microscopy observation of strained thin films showed unique deformation mode, involving many bands that developed both in the parallel and perpendicular directions to the stress axis. This is quite different from the deformation modes seen for ionomer blend films and for coextruded polystyrene/poly(methyl methacrylate) multilayer tapes. © 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 50: 101–105, 2012  相似文献   

3.
Dynamic mechanical properties of styrene‐based ionomers containing varying amounts of either 15‐crown‐5 ether (CE) or pentaethylene glycol (PG) are compared with those of ionomers of varying degree of neutralization (ND). The cluster Tg (Tg,c) and ionic modulus of the ionomers decrease with increasing amount of CE or PG or decreasing ND. Thus, we propose that the CE binds Na+ strongly to form a large‐sized complex. Thus, the electrostatic interactions between charges decrease, leading to lower Tg,c. For the PG‐containing ionomers, the PG acts as polar plasticizer, further lowing the Tg,c. In the case of the underneutralized ionomers, the Tg,c is reduced by the existence of both relatively weak hydrogen bonds between carboxylic acid groups and relatively strong ionic bonds between ion pairs in the multiplets. The small‐angle X‐ray scattering results are also supportive of the above interpretations. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 1358–1367  相似文献   

4.
A new amphiphilic diblock copolymer containing an ionomer segment, poly[(4‐vinylbenzyl triethyl ammonium bromide)‐co‐(4‐methylstyrene)‐co‐(4‐bromomethylstyrene)]‐b‐polyisobutene [poly(4‐VBTEAB)‐b‐PIB], was synthesized by the chemical modification of poly(4‐methylstyrene)‐b‐polyisobutene [poly(4‐MSt)‐b‐PIB]. First, the 4‐methylstyrene moiety in poly(4‐MSt)‐b‐PIB was brominated with azobisisobutyronitrile as an initiator at 60 °C in CCl4, and then the highly reactive benzyl bromide groups were ionized by a reaction with triethylamine in a toluene/isopropyl alcohol (80/20 v/v) mixture at about 85 °C to produce the ionomer diblock copolymer poly(4‐VBTEAB)‐b‐PIB. The solubility of the ionomer block copolymer was quite different from that of the corresponding poly[(4‐methylstyrene)‐co‐(4‐bromomethylstyrene)]‐b‐polyisobutene {poly[(4‐MSt)‐co‐(4‐BrMSt)]‐b‐PIB}. Transmission electron microscopy observations demonstrated that all three diblock copolymers had microphase‐separation structures in which polyisobutene (PIB) domains existed in the continuous phase of the poly(4‐methylstyrene) segment or its derivative segment matrix. Dynamic mechanical thermal analysis measurements showed that poly[(4‐MSt)‐co‐(4‐BrMSt)]‐b‐PIB had two glass‐transition temperatures (Tg's), ?56 °C for the PIB segment and 62 °C for the poly[(4‐MSt)‐co‐(4‐BrMSt)] domain, whereas poly(4‐VBTEAB)‐b‐PIB showed one Tg at ?8 °C of the PIB domain; Tg of the poly[(4‐vinylbenzyl triethyl ammonium bromide)‐co‐(4‐methylstyrene)‐co‐(4‐bromomethylstyrene)] domain was not observable because of the strong ionic interactions resulting in a higher Tg and a retention of modulus up to 124 °C. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 2755–2764, 2003  相似文献   

5.
The mechanical properties and morphology of homoblends of poly(ethyl acrylate‐co‐acrylate) (PEAA) having one ion pair per ionic monomer repeat unit and poly(ethyl acrylate‐co‐itaconate) (PEAITA) having two ion pairs were investigated. It was found that the compositional variation in the ionomer homoblends did not affect the matrix or cluster glass transition temperatures of the two ionomers of the homoblends. It was also observed that the ionomer homoblends showed two ionic plateaus and that the changes in the two ionic moduli were directly related to the relative amounts of the two ionomers. The ionic moduli calculated with the model for filler‐dispersed materials were found to fit the experimental data to a great extent. Therefore, it was suggested that the PEAITA/PEAA ionomer homoblends were filler‐containing composite materials rather than miscible blends. In the X‐ray scattering study, it was observed that the morphology of the ionomer homoblends was not affected by mixing. The results obtained in this work might be useful for the modification of the storage moduli of copolymers in a certain temperature range without the alteration of their processing temperatures. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 1045–1052, 2007.  相似文献   

6.
Poly[isobutyl methacrylate‐co‐butanediol dimethacrylate‐co‐3‐methacrylylpropylheptaisobutyl‐T8‐polyhedral oligomeric silsesquioxane] [P(iBMA‐co‐BDMA‐co‐MA‐POSS)] nanocomposites with different crosslink densities and different polyhedral oligomeric silsesquioxane (MA‐POSS) percentages (5, 10, 15, 20, and 30 wt %) were synthesized by radical‐initiated terpolymerization. Linear [P(iBMA‐co‐MA‐POSS)] copolymers were also prepared. The viscoelastic properties and morphologies were studied by dynamic mechanical thermal analysis, confocal microscopy, and transmission electron microscopy (TEM). The viscoelastic properties depended on the crosslink density. The dependence of viscoelastic properties on MA‐POSS content at a low BDMA loading (1 wt %) was similar to that of linear P(iBMA‐co‐MA‐POSS) copolymers. P(iBMA‐co‐1 wt % BDMA‐co‐10 wt % MA‐POSS) exhibited the highest dynamic storage modulus (E′) values in the rubbery region of this series. The 30 wt % MA‐POSS nanocomposites with 1 wt % BDMA exhibited the lowest E′. However, the E′ values in the rubbery region for P(iBMA‐co‐3 wt % BDMA‐co‐MA‐POSS) nanocomposites with 15 and 30 wt % MA‐POSS were higher than those of the parent P(iBMA‐co‐3 wt % BDMA) resin. MA‐POSS raised the E′ values of all P(iBMA‐co‐ 5 wt % BDMA‐co‐MA‐POSS) nanocomposites in the rubbery region above those of P(iBMA‐co‐5 wt % BDMA), but MA‐POSS loadings < 15 wt % had little influence on glass‐transition temperatures (Tg's) and slightly reduced Tg values with 20 or 30 wt % POSS. Heating history had little influence on viscoelastic properties. No POSS aggregates were observed for the P(iBMA‐co‐1 wt % BDMA‐co‐MA‐POSS) nanocomposites by TEM. POSS‐rich particles with diameters of several micrometers were present in the nanocomposites with 3 or 5 wt % BDMA. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 355–372, 2005  相似文献   

7.
Graft terpolymers bearing polyether side chains and poly(methacrylate) stems were synthesized by the graftonto reaction of monoamino‐terminated poly(PO9co‐EO1) to poly{[5‐(methacryloyloxy)methyl‐1,3‐oxathiolane‐2‐thione]‐con‐butyl methacrylate} [poly(DTCMMA‐co‐BuMA)]. The grafting reaction proceeded via the nucleophilic addition of the terminal amino groups to the five‐membered cyclic dithiocarbonate moieties giving thiol moieties, although the grafting efficiency was low (9–34%) due to the steric hindrance of the side chains. The Tg values of the poly{[DTCMMA‐graft‐poly(PO9co‐EO1)]‐co‐BuMA} ranged 27–47 °C, depending on the amounts of flexible poly(PO9co‐EO1) chains introduced lowering the Tg values. Poly{[DTCMMA‐graft‐poly(PO9co‐EO1)]‐co‐BuMA}s bearing thiol groups were applied for the modification of wool via the disulfide exchange reaction. The modified wool had better dye ability toward a pigment from safflower than the original wool owing to the hydrophilic nature of poly{[DTCMMA‐graft‐poly(PO9co‐EO1)]‐co‐BuMA} introduced. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

8.
Miscibility and strong specific interactions that occurred within homoblends of poly(styrene‐co‐4‐vinylpyridine) containing 15 mol % of 4‐vinylpyridine (PS4VP15) and poly(styrene‐co‐methacrylic acid) containing 15 mol % of methacrylic acid (PSMA15) have been examined by Fourier Transform infrared spectroscopy and DSC. The observed positive deviation of the glass transition temperature of the blends from the linear average line, was analyzed by the frequently used theoretical conventional approaches including the one very recently proposed by Brostow. A better fit was obtained when this latter is used. A reasonable agreement with experimental values was also obtained when the theoretical fitting parameter free method developed by Coleman, is applied to predict the composition dependence of the Tg of this system. A thermodynamic analysis of hydrogen bonding in this system was carried using the Painter‐Coleman association model and the variation of the Gibbs function of mixing and its different contributions and corresponding phase diagrams as a function of temperature and composition were estimated. This analysis predicted PSMA15 to be miscible with PS4VP15 in the whole composition range up to 150 °C. Above this temperature, a partial miscibility is predicted when the PS4VP15 is in excess. The DSC results are in agreement with these predictions. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 923–931, 2009  相似文献   

9.
The dynamic mechanical properties and morphology of carboxylated polysulfone ionomers were investigated by dynamic mechanical thermal analysis and small-angle X-ray scattering (SAXS) techniques. It was found that at 25 mol % of ions, ionomers show two glass transitions: one at about 200 °C (the matrix Tg) and the other at about 235 °C (the cluster Tg). It was also found that with increasing ion content up to about 37 mol %, the matrix Tg shifted to higher temperatures and the size of tan δ peak decreased. The cluster Tg did not change. From the results, it is suggested that even at high ion content, the ionomers contain a significant amount of unclustered material, but that the increase in the ion content does not increase the amount of clustered material. SAXS profiles showed the ionic peak, which represents the presence of multiplets in the cluster regions. In addition, the difference in the matrix and cluster Tg's of this ionomer system was found to be about 35°. Thus, it is postulated that ionic group aggregation is subject to steric hindrance owing to the bulkiness of benzene ring, and tension on polymer chains surrounding the multiplet owing to chain rigidity, which limit the size and stability of the multiplet significantly. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 3226–3232, 1999  相似文献   

10.
Poly(ethylene‐g‐styrene) and poly(ethylene‐g‐methyl methacrylate) graft copolymers were prepared by atom transfer radical polymerization (ATRP). Commercially available poly(ethylene‐co‐glycidyl methacrylate) was converted into ATRP macroinitiators by reaction with chloroacetic acid and 2‐bromoisobutyric acid, respectively, and the pendant‐functionalized polyolefins were used to initiate the ATRP of styrene and methyl methacrylate. In both cases, incorporation of the vinyl monomer into the graft copolymer increased with extent of the reaction. The controlled growth of the side chains was proved in the case of poly(ethylene‐g‐styrene) by the linear increase of molecular weight with conversion and low polydispersity (Mw /Mn < 1.4) of the cleaved polystyrene grafts. Both macroinitiators and graft copolymers were characterized by 1H NMR and differential scanning calorimetry. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 2440–2448, 2000  相似文献   

11.
Small‐angle X‐ray scattering profiles of ethylene and styrene ionomers were studied to clarify the structure of ionic aggregates as a function of humidity or temperature. The intensity and position of ionic cluster peaks were observed for ionomers with a certain degree of neutralization. The intensity of the ionic cluster peak for the ethylene ionomer increased with increasing relative humidity, but it decreased for the styrene ionomer. With increasing humidity, the position of the ionic cluster peak shifted to smaller angles for both ionomers. The size of the ionic aggregates and the closest approach distance between the aggregates were analyzed, and the results varied with humidity for both ionomers. The size did not vary markedly with a change in temperature, whereas the closest approach distance and number of ionic aggregates changed slightly with the melting temperature of the ethylene ionomer and the glass‐transition temperature of the styrene ionomer. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 831–839, 2002  相似文献   

12.
The surfaces of poly(styrene‐co‐acrylic acid) copolymers and their Na‐ and Cs‐neutralized ionomers were modified by O2‐plasma source ion implantation (PSII) treatment to improve the surface wettability. The changes in the surface wettability, composition, and structure upon the PSII treatment were examined with contact‐angle measurements and X‐ray photoelectron spectroscopy. The untreated surfaces of the acid copolymers and ionomers exhibited different surface energies; this implied clearly that the type of ion species affects the surface hydrophilicity. Also, the PSII treatment induced oxygen‐containing groups to reside on the surface and ionic groups to come out toward the surface; this made the surfaces of the ionomers more hydrophilic as compared with that of the acid copolymers. The ionomers also showed slow hydrophobic recovery. Thus, it was suggested that the reduced mobility of the polymer chain because of the presence of ionic aggregates results in restricted reorientation of oxygen‐containing groups. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 1791–1797, 2003  相似文献   

13.
The effects of elastomer type on morphology, flammability and rheological properties of high‐impact polystyrene/Mg(OH)2 based on encapsulated by polystyrene have been investigated. The ternary composites characterized by cone calorimetry, horizontal burning rate, limiting oxygen index (LOI), rheology and SEM. Morphology was controlled using poly[styrene‐b‐(ethylene‐co‐butylene)‐b‐styrene] triblock copolymer (SEBS) or the corresponding maleinated SEBS (SEBS‐g‐MA). As revealed by SEM observations, composites of HIPS/SEBS/Mg(OH)2 exhibit separation of the filler and elastomer and good adhesion between SEBS and the filler, whereas composites of HIPS/SEBS‐g‐MA/Mg(OH)2 exhibit encapsulation of the filler by SEBS‐g‐MA. The flame retardant and rheological properties of ternary composites were strongly dependent on microstructure. The rheological test showed that the composites with encapsulation structure exhibit a stronger solid‐like response at low frequency than those of the composites with separate dispersion structure. The combustion tests showed that the composites with encapsulation structure showed higher flame retardant properties than those of separate dispersion structure at optimum use level of SEBS‐g‐MA. However, with the increase of the content of SEBS‐g‐MA, the flame retardancy of the composite declined somewhat which can be explained that the SEBS‐g‐MA coating acts as a heat and mass transfer barrier due to the formation of encapsulation structure. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 2023–2030, 2007  相似文献   

14.
A well‐defined branched copolymer with PLLA‐b‐PS2 branches was prepared by combination of reversible addition‐fragmentation transfer (RAFT) polymerization, ring‐opening polymerization (ROP), and atom transfer radical polymerization (ATRP). The RAFT copolymerization of methyl acrylate (MA) and hydroxyethyl acrylate (HEA) yielded poly(MA‐co‐HEA), which was used as macro initiator in the successive ROP polymerization of LLA. After divergent reaction of poly(MA‐co‐HEA)‐g‐PLLAOH with divergent agent, the macro initiator, poly(MA‐co‐HEA)‐g‐PLLABr2 was formed in high conversion. The following ATRP of styrene (St) produced the target polymer, poly(MA‐co‐HEA)‐g‐(PLLA‐b‐PS2). The structures, molecular weight, and molecular weight distribution of the intermediates and the target polymers obtained from every step were confirmed by their 1H NMR and GPC measurements. DSC results show one T = 3 °C for the poly(MA‐co‐HEA), T = ?5 °C, T= 122 °C, and T = 157 °C for the branched copolymers (poly(MA‐co‐HEA)‐g‐PLLA), and T = 51 °C, T = 116 °C, and T = 162 °C for poly(MA‐co‐HEA)‐g‐(PLLA‐b‐PS2). © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 549–560, 2006  相似文献   

15.
Ionic aggregates in a series of Zn‐neutralized poly(styrene‐co‐styrene sulfonate) (SPS) random ionomers have been imaged using scanning transmission electron microscopy. The Zn‐rich aggregates were found to have two shapes: solid spheres (Type I) and shells or vesicles (Type II). Type I aggregates range in a maximum diameter from 4 to 10 nm, whereas Type II aggregates range in a maximum diameter from 9 to 55 nm with a vesicle wall thickness of ∼ 3 nm. Lightly neutralized ionomers exhibited only Type I aggregates, whereas higher neutralization levels exhibited both Type I and II aggregates. Lightly neutralized ionomers also showed evidence of macrophase separation at the micron size scale. These direct observations of ionic aggregates contradict previous interpretations of small‐angle X‐ray scattering data with respect to size, size dispersity, shape, and spatial distribution. In addition, the aggregates observed in SPS differ markedly from the nearly monodisperse ∼ 2‐nm spherical aggregates observed in Zn‐neutralized poly(ethylene‐co‐methacrylic acid). The presence of vesicular aggregates encourages a re‐examination of the morphologies and properties of styrenic ionomers. © 2001 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 39: 477–483, 2001  相似文献   

16.
The miscibility of tetramethylpolycarbonate (TMPC) blends with styrenic copolymers containing various methacrylates was examined, and the interaction energies between TMPC and methacrylate were evaluated from the phase‐separation temperatures of TMPC/copolymer blends with lattice‐fluid theory combined with a binary interaction model. TMPC formed miscible blends with styrenic copolymers containing less than a certain amount of methacrylate, and these miscible blends always exhibited lower critical solution temperature (LCST)‐type phase behavior. The phase‐separation temperatures of TMPC blends with copolymers such as poly(styrene‐co‐methyl methacrylate), poly(styrene‐co‐ethyl methacrylate), poly(styrene‐con‐propyl methacrylate), and poly(styrene‐co‐phenyl methacrylate) increase with methacrylate content, go through a maximum, and decrease, whereas those of TMPC blends with poly(styrene‐con‐butyl methacrylate) and poly(styrene‐co‐cyclohexyl methacrylate) always decrease. The calculated interaction energy for a copolymer–TMPC pair is negative and increases with the methacrylate content in the copolymer. This would seem to contradict the prediction of the binary interaction model, that systems with more favorable energetic interactions have higher LCSTs. A detailed inspection of lattice‐fluid theory was performed to explain such phase behavior. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 1288–1297, 2002  相似文献   

17.
Radical copolymerizations of 2‐isothiocyanatoethyl methacrylate (ITEMA) and 2‐hydroxyethyl methacrylate (HEMA) or methacrylic acid (MAA) were examined, and fundamental properties of the obtained copolymers were investigated. The copolymerizations of various ITEMA/HEMA or ITEMA/MAA compositions proceeded effectively in THF or DMF by using 2,2′‐azobisbutyronitrile (AIBN) as an initiator, keeping the isothiocyanato groups and hydroxyl or carboxyl groups unchanged. Glass transition temperatures (Tg)s of poly(ITEMA‐co‐HEMA)s ranged from 68 to 100 °C, and they were thermally stable up to 200 °C. Meanwhile, Tgs of poly(ITEMA‐co‐MAA)s (ITEMA/MAA = 91/9, 76/24) were determined to be 91 and 109 °C, respectively. However, poly(ITEMA‐co‐MAA)s were thermally unstable, and significant weight loss was observed around 180 °C, which may be due to an addition of carboxyl groups to isothiocyanato groups followed by an elimination of COS to form amide structure in the copolymers. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 5221–5229  相似文献   

18.
Thermoresponsive double hydrophilic diblock copolymers poly(2‐(2′‐methoxyethoxy)ethyl methacrylate‐co‐oligo(ethylene glycol) methacrylate)‐b‐poly(6‐O‐methacryloyl‐D ‐galactopyranose) (P(MEO2MA‐co‐OEGMA)‐b‐PMAGP) with various compositions and molecular weights were obtained by deprotection of amphiphilic diblock copolymers P(MEO2MA‐co‐OEGMA)‐b‐poly(6‐O‐methacryloyl‐1,2:3,4‐di‐O‐isopropylidene‐D ‐galactopyranose) (P(MEO2MA‐co‐OEGMA)‐b‐PMAlpGP), which were prepared via reversible addition‐fragmentation chain transfer (RAFT) polymerization using P(MEO2MA‐co‐OEGMA) as macro‐RAFT agent. Dynamic light scattering and UV–vis studies showed that the micelles self‐assembled from P(MEO2MA‐co‐OEGMA)‐b‐PMAlpGP were thermoresponsive. A hydrophobic dye Nile Red could be encapsulated by block copolymers P(MEO2MA‐co‐OEGMA)‐b‐PMAGP upon micellization and released upon dissociation of the formed micelles under different temperatures. The galactose functional groups in the PMAGP block have specific interaction with HepG2 cells, and P(MEO2MA‐co‐OEGMA)‐b‐PMAGP has potential applications in hepatoma‐targeting drug delivery and biodetection. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

19.
In this study, an equimolar mixture of oxanorbornenyl‐anthracene (ONB‐anthracene), oxanorbornenyl‐bromide (ONB‐Br), and oxanorbornenyl tosylate (ONB‐OTs) was polymerized via ring opening metathesis polymerization using the first generation Grubbs' catalyst in CH2Cl2 at room temperature to form poly(ONB‐anthracene‐co‐ONB‐Br‐co‐ONB‐OTs)10 copolymer as a main backbone. Next, this main backbone was sequentially clicked with a furan protected maleimide‐terminated poly(methyl methacrylate), 2,2,6,6‐tetramethyl‐1‐piperidinyloxy‐terminated poly(ethylene glycol), and alkyne‐terminated poly(ε‐caprolactone) (PCL20‐alkyne) via Diels–Alder, nitroxide radical coupling, and copper‐catalyzed azide‐alkyne cycloaddition, respectively, to yield a poly(ONB‐g‐PMMA‐co‐ONB‐g‐PEG‐co‐ONB‐g‐PCL)10 heterograft brush copolymer © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

20.
The exfoliated montmorillonite (MMT) nanoplatelets tended to re‐stack with each other after casting the MMT/poly(methylacrylate‐co‐methylmethacrylate) P(MA‐co‐MMA) latex solutions fabricated by soap‐free emulsion polymerization into films as revealed by X‐ray diffraction and transmission electron microscopy. As the content of MMT was increased from 0 to 20 wt %, the Tg measured by differential scanning calorimetry was slightly decreased from 19.2 to 17.2 °C, whereas that measured by dynamic mechanical analysis was increased from 22 to 32 °C, indicating that the local motion of polymer segments has been retarded by MMT nanoplatelets. Besides, the elongated elliptical voids appeared during stretching of 1 wt % MMT/P(MA‐co‐MMA) film to cracking also illustrated the pinning effect provided by the exfoliated MMT. As the content of MMT was increased more than 10 wt %, the mechanical behavior of MMT/P(MA‐co‐MMA) nanocomposite films was changed from ductile to brittle nature with significant increase of Young's modulus and tensile strength owing to the restacking of exfoliated MMT nanoplatelets. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 1064–1069, 2010  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号