首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A time‐fractional reaction–diffusion initial‐boundary value problem with periodic boundary condition is considered on Q ? Ω × [0, T] , where Ω is the interval [0, l] . Typical solutions of such problem have a weak singularity at the initial time t = 0. The numerical method of the paper uses a direct discontinuous Galerkin (DDG) finite element method in space on a uniform mesh, with piecewise polynomials of degree k ≥ 2 . In the temporal direction we use the L1 approximation of the Caputo derivative on a suitably graded mesh. We prove that at each time level of the mesh, our L1‐DDG solution is superconvergent of order k + 2 in L2(Ω) to a particular projection of the exact solution. Moreover, the L1‐DDG solution achieves superconvergence of order (k + 2) in a discrete L2(Q) norm computed at the Lobatto points, and order (k + 1) superconvergence in a discrete H1(Q) seminorm at the Gauss points; numerical results show that these estimates are sharp.  相似文献   

2.
In this article, we develop a two‐grid algorithm for nonlinear reaction diffusion equation (with nonlinear compressibility coefficient) discretized by expanded mixed finite element method. The key point is to use two‐grid scheme to linearize the nonlinear term in the equations. The main procedure of the algorithm is solving a small‐scaled nonlinear equations on the coarse grid and dealing with a linearized system on the fine space using the Newton iteration with the coarse grid solution. Error estimation to the expanded mixed finite element solution is analyzed in detail. We also show that two‐grid solution achieves the same accuracy as long as the mesh sizes satisfy H = O(h1/2). Two numerical experiments are given to verify the effectiveness of the algorithm. © 2012 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2013  相似文献   

3.
We consider the wave equation, on a multidimensional spatial domain. The discretization of the spatial domain is performed using a general class of nonconforming meshes which has been recently studied for stationary anisotropic heterogeneous diffusion problems, see Eymard et al. (IMAJ Numer Anal 30 (2010), 1009–1043). The discretization in time is performed using a uniform mesh. We derive a new implicit finite volume scheme approximating the wave equation and we prove error estimates of the finite volume approximate solution in several norms which allow us to derive error estimates for the approximations of the exact solution and its first derivatives. We prove in particular, when the discrete flux is calculated using a stabilized discrete gradient, the convergence order is \begin{align*} h_\mathcal{D}\end{align*} (resp. k) is the mesh size of the spatial (resp. time) discretization. This estimate is valid under the regularity assumption \begin{align*}u\in C^3(\lbrack 0,T\rbrack;C^2(\overline{\Omega}))\end{align*} for the exact solution u. The proof of these error estimates is based essentially on a comparison between the finite volume approximate solution and an auxiliary finite volume approximation. © 2012 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2013  相似文献   

4.
The boundary element spline collocation method is studied for the time-fractional diffusion equation in a bounded two-dimensional domain. We represent the solution as the single layer potential which leads to a Volterra integral equation of the first kind. We discretize the boundary integral equation with the spline collocation method on uniform meshes both in spatial and time variables. In the stability analysis we utilize the Fourier analysis technique developed for anisotropic pseudodifferential equations. We prove that the collocation solution is quasi-optimal under some stability condition for the mesh parameters. We have to assume that the mesh parameter in time satisfies (ht=c h\frac2a)(h_t=c h^{\frac{2}{\alpha}}), where (h) is the spatial mesh parameter.  相似文献   

5.
We present the convergence analysis of an efficient numerical method for the solution of an initial-boundary value problem for a scalar nonlinear conservation law equation with a diffusion term. Nonlinear convective terms are approximated with the aid of a monotone finite volume scheme considered over the finite volume mesh dual to a triangular grid, whereas the diffusion term is discretized by piecewise linear conforming triangular elements. Under the assumption that the triangulations are of weakly acute type, with the aid of the discrete maximum principle, a priori estimates, and some compactness arguments based on the use of the Fourier transform with respect to time, the convergence of the approximate solutions to the exact solution is proved, provided that the mesh size tends to zero. © 1997 John Wiley & Sons, Inc.  相似文献   

6.
A H1‐Galerkin mixed finite element method is applied to the Kuramoto–Sivashinsky equation by using a splitting technique, which results in a coupled system. The method described in this article may also be considered as a Petrov–Galerkin method with cubic spline space as trial space and piecewise linear space as test space, since the second derivative of a cubic spline is a linear spline. Optimal‐order error estimates are obtained without any restriction on the mesh for both semi‐discrete and fully discrete schemes. The advantage of this method over that presented in Manickam et al., Comput. Math. Appl. vol. 35(6) (1998) pp. 5–25; for the same problem is that the size (i.e., (n + 1) × (n + 1)) of each resulting linear system is less than half of the size of the linear system of the earlier method, where n is the number of subintervals in the partition. Further, there is a requirement of less regularity on exact solution in this method. The results are validated with numerical examples. Finally, instability behavior of the solution is numerically captured with this method.  相似文献   

7.
In this paper, we provide a detailed convergence analysis for fully discrete second‐order (in both time and space) numerical schemes for nonlocal Allen‐Cahn and nonlocal Cahn‐Hilliard equations. The unconditional unique solvability and energy stability ensures ? 4 stability. The convergence analysis for the nonlocal Allen‐Cahn equation follows the standard procedure of consistency and stability estimate for the numerical error function. For the nonlocal Cahn‐Hilliard equation, because of the complicated form of the nonlinear term, a careful expansion of its discrete gradient is undertaken, and an H ?1 inner‐product estimate of this nonlinear numerical error is derived to establish convergence. In addition, an a priori bound of the numerical solution at the discrete level is needed in the error estimate. Such a bound can be obtained by performing a higher order consistency analysis by using asymptotic expansions for the numerical solution. Following the technique originally proposed by Strang (eg, 1964), instead of the standard comparison between the exact and numerical solutions, an error estimate between the numerical solution and the constructed approximate solution yields an O (s 3+h 4) convergence in norm, in which s and h denote the time step and spatial mesh sizes, respectively. This in turn leads to the necessary bound under a standard constraint s C h . Here, we also prove convergence of the scheme in the maximum norm under the same constraint.  相似文献   

8.
In this paper, a parameter‐uniform numerical scheme for the solution of singularly perturbed parabolic convection–diffusion problems with a delay in time defined on a rectangular domain is suggested. The presence of the small diffusion parameter ? leads to a parabolic right boundary layer. A collocation method consisting of cubic B ‐spline basis functions on an appropriate piecewise‐uniform mesh is used to discretize the system of ordinary differential equations obtained by using Rothe's method on an equidistant mesh in the temporal direction. The parameter‐uniform convergence of the method is shown by establishing the theoretical error bounds. The numerical results of the test problems validate the theoretical error bounds.  相似文献   

9.
This article presents a finite element scheme with Newton's method for solving the time‐fractional nonlinear diffusion equation. For time discretization, we use the fractional Crank–Nicolson scheme based on backward Euler convolution quadrature. We discuss the existence‐uniqueness results for the fully discrete problem. A new discrete fractional Gronwall type inequality for the backward Euler convolution quadrature is established. A priori error estimate for the fully discrete problem in L2(Ω) norm is derived. Numerical results based on finite element scheme are provided to validate theoretical estimates on time‐fractional nonlinear Fisher equation and Huxley equation.  相似文献   

10.
A fully discrete local discontinuous Galerkin (LDG) method coupled with 3 total variation diminishing Runge‐Kutta time‐marching schemes, for solving a nonlinear carburizing model, will be analyzed and implemented in this paper. On the basis of a suitable numerical flux setting in the LDG method, we obtain the optimal error estimate for the Runge‐Kutta–LDG schemes by energy analysis, under the condition τλh2, where h and τ are mesh size and time step, respectively, λ is a positive constant independent of h. Numerical experiments are presented to verify the accuracy and capability of the proposed schemes. For the carburizing diffusion processes of steel and the diffusion simulation for Cu‐Ni system, the numerical results show good agreement with the experimental results.  相似文献   

11.
We propose an integrable discrete model of one‐dimensional soil water infiltration. This model is based on the continuum model by Broadbridge and White, which takes the form of nonlinear convection–diffusion equation with a nonlinear flux boundary condition at the surface. It is transformed to the Burgers equation with a time‐dependent flux term by the hodograph transformation. We construct a discrete model preserving the underlying integrability, which is formulated as the self‐adaptive moving mesh scheme. The discretization is based on linearizability of the Burgers equation to the linear diffusion equation, but the naïve discretization based on the Euler scheme which is often used in the theory of discrete integrable systems does not necessarily give a good numerical scheme. Taking desirable properties of a numerical scheme into account, we propose an alternative discrete model that produces solutions with similar accuracy to direct computation on the original nonlinear equation, but with clear benefits regarding computational cost.  相似文献   

12.
A system of two coupled singularly perturbed convection–diffusion ordinary differential equations is examined. The diffusion term in each equation is multiplied by a small parameter, and the equations are coupled through their convective terms. The problem does not satisfy a conventional maximum principle. Its solution is decomposed into regular and layer components. Bounds on the derivatives of these components are established that show explicitly their dependence on the small parameter. A numerical method consisting of simple upwinding and an appropriate piecewise-uniform Shishkin mesh is shown to generate numerical approximations that are essentially first order convergent, uniformly in the small parameter, to the true solution in the discrete maximum norm.   相似文献   

13.
We study the convergence of two generalized marker‐and‐cell covolume schemes for the incompressible Stokes and Navier–Stokes equations introduced by Cavendish, Hall, Nicolaides, and Porsching. The schemes are defined on unstructured triangular Delaunay meshes and exploit the Delaunay–Voronoi duality. The study is motivated by the fact that the related discrete incompressibility condition allows to obtain a discrete maximum principle for the finite volume solution of an advection–diffusion problem coupled to the flow. The convergence theory uses discrete functional analysis and compactness arguments based on recent results for finite volume discretizations for the biharmonic equation. For both schemes, we prove the strong convergence in L2 for the velocities and the discrete rotations of the velocities for the Stokes and the Navier–Stokes problem. Further, for one of the schemes, we also prove the strong convergence of the pressure in L2. These predictions are confirmed by numerical examples presented in the article. © 2014 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 30: 1397–1424, 2014  相似文献   

14.
We consider a Cahn‐Hilliard–type equation with degenerate mobility and single‐well potential of Lennard‐Jones type. This equation models the evolution and growth of biological cells such as solid tumors. The degeneracy set of the mobility and the singularity set of the cellular potential do not coincide, and the absence of cells is an unstable equilibrium configuration of the potential. This feature introduces a nontrivial difference with respect to the Cahn‐Hilliard equation analyzed in the literature. We give existence results for different classes of weak solutions. Moreover, we formulate a continuous finite element approximation of the problem, where the positivity of the solution is enforced through a discrete variational inequality. We prove the existence and uniqueness of the discrete solution for any spatial dimension together with the convergence to the weak solution for spatial dimension d=1. We present simulation results in 1 and 2 space dimensions. We also study the dynamics of the spinodal decomposition and the growth and scaling laws of phase ordering dynamics. In this case, we find similar results to the ones obtained in standard phase ordering dynamics and we highlight the fact that the asymptotic behavior of the solution is dominated by the mechanism of growth by bulk diffusion.  相似文献   

15.
Superconvergence approximations of singularly perturbed two‐point boundary value problems of reaction‐diffusion type and convection‐diffusion type are studied. By applying the standard finite element method of any fixed order p on a modified Shishkin mesh, superconvergence error bounds of (N?1 ln (N + 1))p+1 in a discrete energy norm in approximating problems with the exponential type boundary layers are established. The error bounds are uniformly valid with respect to the singular perturbation parameter. Numerical tests indicate that the error estimates are sharp; in particular, the logarithmic factor is not removable. © 2002 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 18: 374–395, 2002; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/num.10001  相似文献   

16.
Summary. This paper is devoted to the study of a posteriori and a priori error estimates for the scalar nonlinear convection diffusion equation . The estimates for the error between the exact solution and an upwind finite volume approximation to the solution are derived in the -norm in the situation, where the diffusion parameter is smaller or comparable to the mesh size. Numerical experiments underline the theoretical results. Received February 25, 1999 / Revised version received July 6, 1999 / Published online August 2, 2000  相似文献   

17.
This paper studies mixed finite element approximations to the solution of the viscoelasticity wave equation. Two new transformations are introduced and a corresponding system of first‐order differential‐integral equations is derived. The semi‐discrete and full‐discrete mixed finite element methods are then proposed for the problem based on the Raviart–Thomas–Nedelec spaces. The optimal error estimates in L2‐norm are obtained for the semi‐discrete and full‐discrete mixed approximations of the general viscoelasticity wave equation. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

18.
We deal with the numerical solution of a scalar nonstationary nonlinear convection‐diffusion equation. We employ a combination of the discontinuous Galerkin finite element (DGFE) method for the space as well as time discretization. The linear diffusive and penalty terms are treated implicitly whereas the nonlinear convective term is treated by a special higher order explicit extrapolation from the previous time step, which leads to the necessity to solve only a linear algebraic problem at each time step. We analyse this scheme and derive a priori asymptotic error estimates in the L(L2) –norm and the L2(H1) –seminorm with respect to the mesh size h and time step τ. Finally, we present an efficient solution strategy and numerical examples verifying the theoretical results. © 2010 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 27: 1456–1482, 2010  相似文献   

19.
Discrete duality finite volume schemes on general meshes, introduced by Hermeline and Domelevo and Omnès for the Laplace equation, are proposed for nonlinear diffusion problems in 2D with nonhomogeneous Dirichlet boundary condition. This approach allows the discretization of non linear fluxes in such a way that the discrete operator inherits the key properties of the continuous one. Furthermore, it is well adapted to very general meshes including the case of nonconformal locally refined meshes. We show that the approximate solution exists and is unique, which is not obvious since the scheme is nonlinear. We prove that, for general W?1,p(Ω) source term and W1‐(1/p),p(?Ω) boundary data, the approximate solution and its discrete gradient converge strongly towards the exact solution and its gradient, respectively, in appropriate Lebesgue spaces. Finally, error estimates are given in the case where the solution is assumed to be in W2,p(Ω). Numerical examples are given, including those on locally refined meshes. © 2006 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2007  相似文献   

20.
In this article, we investigate local discontinuous Galerkin approximation of stationary convection‐dominated diffusion optimal control problems with distributed control constraints. The state variable and adjoint state variable are approximated by piecewise linear polynomials without continuity requirement, whereas the control variable is discretized by variational discretization concept. The discrete first‐order optimality condition is derived. We show that optimization and discretization are commutative for the local discontinuous Galerkin approximation. Because the solutions to convection‐dominated diffusion equations often admit interior or boundary layers, residual type a posteriori error estimate in L2 norm is proved, which can be used to guide mesh refinement. Finally, numerical examples are presented to illustrate the theoretical findings. © 2013 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 30: 339–360, 2014  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号