首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Electron paramagnetic resonance (EPR) spectra of doped paramagnetic crystals LiLuF4:U3+ and LiYF4:Yb3+ have been investigated at a frequency of about 9.42 GHz in the temperature range of 10–20 K. The U3+ ion spectrum is characterized by g-factors g = 1.228 and g = 2.516, and contains the hyperfine structure due to the 235U isotope with nuclear spin I = 7/2 and natural abundance of 0.71%. The observed hyperfine interaction constants are A = 81 G and A = 83.8 G. Moreover, the spectrum reveals the well-resolved superhyperfine structure (SHFS) due to two groups of four fluorine ions forming the nearest surrounding of the U3+ ion. This SHFS contains up to nine components with the spacing between components being about 12.7 G. The SHFS is observed also in the EPR spectrum of the LiYF4:Yb3+ crystal; up to 17 components with spacing of about 3.7 G may be traced. Some parameters of the effective Hamiltonian of the SHF interaction are estimated, the contribution of covalent bonding of f-electrons with ligands into these parameters is discussed. Authors' address: Igor N. Kurkin, Kazan State University, Kremlevskaya ulitsa 18, Kazan 420008, Russian Federation  相似文献   

2.
Exfoliated Bi2Sr2CaCu2O8+δ (Bi‐2212) single crystals were prepared by micromechanical cleavage of bulk Bi‐2212 single crystals on SiO2/Si substrates. Room temperature micro‐Raman spectra were collected using a 532‐nm laser source. The evolutions of the spectra of A1g (Bi), A1g (Sr), and A1g (OBi) Raman modes with different thicknesses of the samples were studied. The refractive index of Bi‐2212 single crystal was obtained by studying the intensity evolutions based on the interference effect. The observed wavenumber shifts of the A1g (Bi), A1g (Sr), and A1g (OBi) modes were analyzed. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

3.
A relatively weak ESR spectrum is observed in single crystals of NaN3 after X-ray irradiation at 77 K. This spectrum, which has an anisotropic g value and exhibits a resolved 5-line hyperfine structure with components in the ratio 1:2:3:2:1, corresponds to a single unpaired electron interacting symmetrically with two spin-one nuclei, in three inequivalent sites. The spin-Hamiltonian parameters are: gx = 2.0054 ± 0.0005, gy = 2.0045 ± 0.0005, gz = 1.9688 ± 0.0005, |Ax| = 4.0 ± 0.2 G, |Ay| = 20.0 ± 0.2 G, and |Az| = 4.9 ± 0.2 G, c-axis, and y is perpendicular to the c-axis. This spectrum, which is clearly different from that of substitutional N2?reported by Gelerinter and Silsbee, is attributed to interstitial N2?.  相似文献   

4.
In this study, paramagnetic centers over the cytosine were formed by photolysis then these centers were investigated using EPR method. EPR signals were not recorded from non‐irradiated the cytosine, but irradiated polycrystalline exhibited complex EPR spectra. For obtaining of cytosine polycrystalline, novel crystallization method was performed on powder cytosine. Effective crystallization conditions were achieved by adjustment of the concentration of the metal ions, chemical solutions, NaCl, KCl, glacial asetic acid, nitric oxide, percloric acid, glutamic acid, and pH of buffer. Cytosine (C4H5N2O) polycrystalline obtained were irradiated with 60Co – rays at room temperature for 24 and 72 h. At the sample irradiated for 72 h, the paramagnetic centers were determined between 120 and 450 K by X‐band EPR spectrometer. The spectra were found to be dependent slightly on temperature. Two cation radicals were determined in the structure and these were called Radicals I and II. The g and hyperfine constants were found to be aH2a = 61 G, aN2 = 9.39 G, aN1 = 7.15 G, and g1=2.0026 for the Radical I; aH3 = 10.57 G, aH1 = 3 G, aN3 = 6.72 G, aN1 = 5.36 G for, and g2=2.0034 the Radical II. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

5.
Bis(cyclopentadienyl)zirconium dichloride (BCZD; zirconocene dichloride) single crystals were exposed to 60Co-γ irradiation at room temperature. The irradiated single crystals were investigated between 125 and 470?K by electron paramagnetic resonance spectroscopy. The spectra of the crystals were found to be temperature independent. The paramagnetic center was attributed to the cyclopentadienyl radical. The g values of the radiation damage center observed in BCZD single crystal and the hyperfine structure constants of the free electron with nearby protons were obtained.  相似文献   

6.
The electron paramagnetic resonance (EPR) spectra of gamma-irradiated single crystals of phenidone (fenidon C9H10N2O) have been studied for different orientations of crystals in a magnetic field. Phenidone single crystals have been irradiated with 60Co-γ rays at room temperature. The EPR spectra have been investigated at temperatures between 125 and 450 K. The spectra have been found to be temperature independent. The spin-Hamiltonian parameters have been obtained from the single-crystal EPR analysis. The principal values of the hyperfine coupling tensor of the unpaired electron and the principal values of the g-tensor have been determined.  相似文献   

7.
Zinc ferrite nanoparticles of different sizes ranging from 12 to 62 nm were synthesized by using the nitrate route. These nanoparticles were irradiated by a 100 MeV oxygen beam at two fluences: 1 × 1013 and 5 × 1013 ions/cm2. It was observed that modes corresponding to cubic spinel phase were retained after the irradiation in all the systems. The variation in the parameters of various modes follows phonon confinement, while this effect seems to violate in irradiated specimen. It was found that the irradiation‐induced changes in the modes F2g(2) and F2g(3) depend on whether the crystallite size of the pristine sample is less than, equal to or greater than the phonon confinement length, while this length is not dominant for the irradiation‐induced changes in the mode A1g. The changes in various parameters of the modes are attributed to the combined effect of the restructuring of the chemical species and ion‐induced defects. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

8.
In this work, the experimental and theoretical vibrational spectra of N1‐methyl‐2‐chloroaniline (C7H8NCl) were studied. FT‐IR and FT‐Raman spectra of the title molecule in the liquid phase were recorded in the region 4000–400 cm?1 and 3500–50 cm?1, respectively. The structural and spectroscopic data of the molecule in the ground state were calculated by using density functional method (B3LYP) with the 6‐311++G(d,p) basis set. The vibrational frequencies were calculated and scaled values were compared with experimental FT‐IR and FT‐Raman spectra. The observed and calculated frequencies are found to be in good agreement. The complete assignments were performed on the basis of the total energy distribution (TED) of the vibrational modes, calculated with scaled quantum mechanics (SQM) method. 13C and 1H NMR chemical shifts results were compared with the experimental values. The optimized geometric parameters (bond lengths and bond angles) were given and are in agreement with the corresponding experimental values of aniline and p‐methyl aniline. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

9.
1H-Benzo[b]pyrrole samples were irradiated in the air with gamma source at 0.969?kGy per hour at room temperature for 24, 48 and 72?h. After irradiation, electron spin resonance, thermogravimetry analysis (TGA) and differential thermal analysis (DTA) measurements were immediately carried out on the irradiated and unirradiated samples. The ESR measurements were performed between 320 and 400?K. ESR spectra were recorded from the samples irradiated for 48 and 72?h. The obtained spectra were observed to be dependent on temperature. Two radical-type centres were detected on the sample. Detected radiation-induced radicals were attributed to R-+?NH and R=?CC2H2. The g-values and hyperfine constants were calculated by means of the experimental spectra. It was also determined from TGA spectrum that both the unirradiated and irradiated samples were decomposed at one step with the rising temperature. Moreover, a theoretical study was presented. Success of the machine learning methods was tested. It was found that bagging techniques, which are widely used in the machine learning literature, could optimise prediction accuracy noticeably.  相似文献   

10.
The first conformational analysis of 3‐silathiane and its C‐substituted derivatives, namely, 3,3‐dimethyl‐3‐silathiane 1 , 2,3,3‐trimethyl‐3‐silathiane 2 , and 2‐trimethylsilyl‐3,3‐dimethyl‐3‐silathiane 3 was performed by using dynamic NMR spectroscopy and B3LYP/6‐311G(d,p) quantum chemical calculations. From coalescence temperatures, ring inversion barriers ΔG for 1 and 2 were estimated to be 6.3 and 6.8 kcal/mol, respectively. These values are considerably lower than that of thiacyclohexane (9.4 kcal/mol) but slightly higher than the one of 1,1‐dimethylsilacyclohexane (5.5 kcal/mol). The conformational free energy for the methyl group in 2 (?ΔG° = 0.35 kcal/mol) derived from low‐temperature 13C NMR data is fairly consistent with the calculated value. For compound 2 , theoretical calculations give ΔE value close to zero for the equilibrium between the 2 ‐Meax and 2 ‐Meeq conformers. The calculated equatorial preference of the trimethylsilyl group in 3 is much more pronounced (?ΔG° = 1.8 kcal/mol) and the predominance of the 3 ‐SiMe3 eq conformer at room temperature was confirmed by the simulated 1H NMR and 2D NOESY spectra. The effect of the 2‐substituent on the structural parameters of 2 and 3 is discussed. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

11.
CdWO4 crystals grown by the Czochralski method at the low-temperature gradient were investigated with electron spin resonance (ESR) spectroscopy. ESR spectra did not contain the spectra of impurity ions typical for the CdWO4 structure, i.e., Fe3+, Mn2+, and Cr3+. At the same time, in the studied crystals a complex ESR spectrum having the hyperfine structure due to two nonequivalent tungsten atoms was observed (W183;I=1/2; natural abundance, 14.28%). Angular dependence analysis and simulation of ESR spectra have shown that this novel spectrum is described by a spin-Hamiltonian with the following parameters:D=839 G,E=80 G,g xx=2.01,g yy=1.97,g zz=1.987 and electron spinS=7/2. There is one magnetically nonequivalent position of the center in the crystal structure and the direction ofD zz andg zz corresponds to the direction of Wn-Wn+2 (or Cdn-Cdn+2) in the crystal structure. Because of the fact that it is in principle impossible to achieve the electron stateS=7/2 for the d-shell of one transition metal ion and taking into account the fact that such electron state is realized for two nonequivalent tungsten atoms, we suppose the defect structure to be the chain W2+-M+-W3+. In the structure of this defect the ion M+ is diamagnetic, the ions W2+ and W3+ have electron spinS=2 andS=3/2, respectively. The necessary condition for such defect to exist is to place this chain of ions in cadmium positions for the charge compensation. the reason for such defects to form is supposed to be the incorporation of M+ ions into the CdWO4 lattice. The presence of W2+ and W3+ in Cd positions in the defect structure provides the charge compensation and the lowering of the lattice stress.  相似文献   

12.
One of the radicals formed in irradiated 5-iododeoxyuridine is shown unambiguously to be the α-iodo radical RCH2-?(I)R′ formed by hydrogen atom addition to C6. The 127I hyperfine tensor components, Ax = + 90 G, Ay = (-) 50 G, Az = (-)40 G are proposed as being characteristic of the coupling to be expected for α-iodo alkyl radicals. Hence a radical recently detected in irradiated iodoacetamide with a maximum hyperfine coupling of 250 G cannot have this structure. Possible alternative structures are discussed.

The way in which the E.S.R. spectra for the α-iodo radica in 5-iododeoxyuridine are modified by the quadrupole interaction from 127I is described and hence an estimate of the quadrupole coupling is obtained.  相似文献   

13.
Photoinduced reactions of 9‐oxo‐6,9‐dihydro[1,2,5]selenadiazolo[3,4‐f]quinoline‐8‐carboxylic acid (SeQCA) were investigated in alkaline media (aqueous NaOH solutions) by electron paramagnetic resonance (EPR) spectroscopy, following the in situ formation of paramagnetic species. According to UV–Vis and nuclear magnetic resonance investigations, protonation (pH ≈ 11) and deprotonation (pH ≈ 13) of the imino hydrogen of the 4‐pyridone moiety has to be considered, reflected also in the different EPR spectra observed upon irradiation. Photoinduced generation of radicals was found only for carboxylate substituted SeQCA; other studied selenadiazoloquinolone derivatives, together with those substituted at the C(8) position (R = H, COOCH2CH3, COOCH3, COCH3 or CN), did not generate paramagnetic species during exposure. Consequently, photodecarboxylation was suggested as the decisive step, accompanied by the decomposition of the selenadiazole ring, resulting in the formation of ortho‐hydroxylate anions. EPR parameters elucidated from experimental EPR spectra obtained at pH ≈ 11 and pH ≈ 13 indicate the formation of oxygen‐centered radicals at the decarboxylated 4‐pyridone ring. EPR spin trapping experiments with nitromethane confirmed a very effective photoinduced electron transfer from all the selenadiazoloquinolones investigated. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

14.
A rutile β‐MnO2 film was grown on MgO substrate using plasma‐assisted molecular beam epitaxy (PAMBE) monitored by reflection high‐energy electron diffraction (RHEED). Polarized Raman spectra at various temperatures were obtained to investigate the influence of the helimagnetic structure on the vibrational modes of β‐MnO2. A red shift of Eg modes indicates a gradual formation of spin angles between neighboring Mn4+ ions. The intensities of the Eg and A1g modes with y‐polarized incidence increase remarkably below the Néel temperature. A new view as vibrational mode projection (VMP) indicates the interactions between the magnetic component of incident light and the helimagnetic structure. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

15.
The single crystals of triphenylphosphinselenid [C18H15PSe] were produced by slow evaporation of concentrated ethyl acetate solutions. These single crystals were exposed to 60Co gamma (γ) rays with a dose speed of 0.980 kGy/h at the room temperature for 72 h. The free radical over the sample was observed using electron paramagnetic resonance (EPR)–X band spectrometer. The EPR spectra were recorded between 120 and 400 K. Furthermore, the sample irradiated was rotated in steps of 10° and analyzed for different orientations of the crystal in the magnetic field. Only one radical structure was determined on the molecule. The hyperfine constants of the sample were found to be anisotropic. The average values of these constants and value of g were calculated as following: g=2.007656, aSe=37.47 G, aP=27.44 G, aHa=17.28 G, and aHb=18.16 G.  相似文献   

16.
A Cl2- centre has been trapped in X or γ-irradiated Ca(ClO3)2. 2H2O single crystals at 298 K, when the irradiated crystals were illuminated with ultra-violet light (360 nm). This centre is formed at the expense of ClO2 centres in this crystal. This Cl2 - centre is trapped at two magnetically inequivalent sites in the crystal lattice and these sites become equivalent when the static magnetic field is parallel or perpendicular to the b axis. At many orientations this centre reveals ‘super-hyperfine’ interaction with a proton (I = 1/2) of the water of crystallization. The magnetic parameters are close to those observed in alkali chlorides and the E.S.R. spectrum has been fitted to an orthorhombic spin hamiltonian. The principal g values are gxx = 2·035, gyy = 2·033 and gzz = 2·000 and those of the A values are Axx = 15·0, Ayy = 31·0 and Azz = 109·0 G. The shfs parameters are A ' = 5·0 A ' = 1·0 G. The VK centre trapped in this lattice is exceptionally stable at room temperature.  相似文献   

17.
ESR studies were conducted on Cu2+-doped bis-(5,5′-diethylbarbiturato)bis picoline Zn(II). Two Cu2+ lattice sites, Cu2+(I) and Cu2+(II), were identified. These sites exhibit two sets of four hyperfine lines in all directions. The g factor and hyperfine splitting were calculated from ESR absorption spectra: gx ?=?2.0201?±?0.002, gy ?=?2.0900?±?0.002, gz ?=?2.1634?±?0.002, Ax ?=?(30?±?2)?×?10?4?cm?1, Ay ?=?(40?±?2)?×?10?4?cm?1 and Az ?=?(154?±?2)?×?10?4?cm?1. It was found that Cu2+ enters the lattice substitutionally. The ground-state wavefunction of the Cu2+ ion in this lattice was determined from the spin Hamiltonian constants obtained from the ESR studies. With the help of an optical absorption study, the nature of the bonding in the complex is also discussed.  相似文献   

18.
The ―NH2, ―NO2, ―NHNO2, ―C(NO2)3 and ―CF(NO2)2 substitution derivatives of 4,4′,5,5′‐tetranitro‐2,2′‐1H,1′H‐2,2′‐biimidazole were studied at B3LYP/aug‐cc‐pVDZ level of density functional theory. The crystal structures were obtained by molecular mechanics (MM) methods. Detonation properties were evaluated using Kamlet–Jacobs equations based on the calculated density and heat of formation. The thermal stability of the title compounds was investigated via the energy gaps (?ELUMO ? HOMO) predicted. Results show that molecules T5 (D = 10.85 km·s?1, P = 57.94 GPa) and T6 (D = 9.22 km·s?1, P = 39.21 GPa) with zero or positive oxygen balance are excellent candidates for high energy density oxidizers (HEDOs). All of them appear to be potential explosives compared with the famous ones, octahydro‐1,3,5,7‐tetranitro‐1,3,5,7‐tetraazocane (HMX, D = 8.96 km·s?1, P = 35.96 GPa) and hexanitrohexaazaisowurtzitane (CL‐20, D = 9.38 km·s?1, P = 42.00 GPa). In addition, bond dissociation energy calculation indicates that T5 and T6 are also the most thermally stable ones among the title compounds. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

19.
The optical absorption spectra and electronic spin resonance parameters (ESR g factors g, g and hyperfine structure constants A, A) for Cu2+ in shattuckite crystal are calculated from the two spin–orbital coupling parameters model, high-order perturbation formulas and complete diagonalization (of energy matrix) method (CDM) of 3d9 ion in tetragonal symmetry. The calculated results are in good agreement with the observed values. Since the ESR parameters are sensitive to the local structure of a paramagnetic impurity center, the defect structure of Cu2+ center in shattuckite crystal is estimated. The results are discussed.  相似文献   

20.
The vibronic coupling between the first excited S1 (21Ag) and the second excited S2 (11Bu) singlet electronic states in spectroscopy of trans‐1,3,5‐hexatriene molecule is investigated on the basis of a model consisting of two electronic states coupled by two vibrational modes. Employing a perturbation theory that treats the intramolecular couplings in a perturbative manner, the absorption and resonance Raman cross sections and excitation profiles of this molecule are calculated using the time‐correlation function formalism. The non‐Condon corrections are included in evaluation of cross sections. The multidimensional time‐domain integrals that arise in these calculations have been evaluated for the case in which S0 (11Ag) S2 (11Bu) electronic transition takes place between displaced and distorted harmonic potential energy surfaces. The calculated spectra are in good agreement with the experimental ones. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号