首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Dispersion and attenuation of Rayleigh surface acoustic waves on a statistically rough free surface of a Z-cut hexagonal crystal were analytically studied using a modified mean-field method within the perturbation theory. Numerical calculations were carried out in the frequency range accessible for the perturbation theory using expressions for the real and imaginary parts of the complex frequency shift of Rayleigh waves caused by a slight surface roughness. The Rayleigh wave dispersion and attenuation in the Z-cut hexagonal crystal were shown to coincide qualitatively with those in an isotropic medium, differing only quantitatively. In the long-wavelength limit λ?a, where a is the lateral roughness correlation length, explicit analytical expressions for the relative change in the phase velocity and the inverse damping depth of Rayleigh waves were derived and used in numerical calculations.  相似文献   

2.
An approach to obtaining the dispersion equation of surface acoustic waves (SAWs) on a stress-free, randomly rough surface of an anisotropic elastic medium is suggested. The problem is solved in the approximation of a weakly rough surface using Green′s function technique. The dispersion and attenuation of sagittally and shear horizontally (SH) polarized SAWs are investigated both analytically and numerically for a three-dimensionally (3D) and a two-dimensionally (2D) rough surface of an isotropic medium. The results for 2D roughness are shown to be contained in the more general expressions for the 3D case, and the connection between the results for the 3D and the 2D cases is pointed out. Dispersion relations are derived for SAWs of both polarizations propagating in an arbitrary direction along a 2D rough surface. The SAW attenuation mechanisms are investigated at various incidence angles. It is concluded that all three mechanisms (viz. scattering into bulk transverse, longitudinal, and Rayleigh surface acoustic waves) are involved for the Rayleigh and SH polarized SAWs at certain incidence angles, whereas at the other angles only some of the mechanisms are. The criterion for the existence of SH polarized SAWs on a rough surface is considered. A possible increase of the SAW phase velocity on a rough surface compared with that for a flat boundary is discussed. In the limit λ a (where a is the roughness correlation length) simple explicit expressions for the phase velocities of Rayleigh and SH polarized SAWs are derived. A comparison of the results obtained herein with those of other workers is presented.  相似文献   

3.
Abstract

A detailed theory of volume spin wave reflection from the randomly rough surface of a ferromagnet is presented. The contribution to damping of the reflected wave is calculated. This contribution is due to the scattering of the initial volume wave into secondary surface and volume spin waves. The value of damping is proportional to the correlation length and the square of the roughness amplitude. Numerical calculations of the attenuation rate as a function of the angle of incidence and the ratio between the surface anisotropy and the wavenumber are provided. They yield the angle of incidence where the attenuation has a maximum. In analogy to optics, this angle is similar to the Brewster angle. Numerical estimations of damping and a comparison of its value with the ferromagnetic resonance linewidth are also made. Finally, the results of the calculation of the scattering of surface exchange spin waves by surface roughness are presented and discussed.  相似文献   

4.
Analytical expressions for the dispersion of the phase velocity and the inverse attenuation length of Rayleigh waves are derived with allowance made for a thin (as compared to the length of the surface wave) isotropic damaged surface layer that is contiguous with vacuum and located on the surface of a hexagonal crystal with the sixfold axis perpendicular to the surface. It is demonstrated that, in the limit of long wavelengths (as compared to the characteristic inhomogeneity size), which is of greatest interest for experimenters, the change in the dispersion of the phase velocity of Rayleigh waves is proportional to the second power of the frequency, whereas the inverse attenuation length of Rayleigh waves is proportional to the fifth power of the frequency. The inverse attenuation length of the Rayleigh wave is calculated numerically. The calculation method previously proposed by one of the authors (Kosachev, 1998) is generalized to the case of an isotropic damaged layer on an anisotropic (hexagonal) substrate.  相似文献   

5.
In the first Born approximation of the perturbation theory by a Green's function method developed by Maradudin, Mills [7] and Kosachev, Lokhov, Chukov [8,9] the problem of scattering bulk acoustic waves with different polarizations at oblique incidence on a statistically rough free boundary of an isotropic solid was solved. When the correlation function of the surface roughness is of a Gaussian form, the expressions for the transformation energy factor of the incident wave in the scattered volume and surface Rayleigh waves with respect to polarization, frequency and grazing angle of the incident wave as well as the roughness parameters and the Poisson coefficient of the medium were obtained. These results are helpful in accounting for the experiments on residual losses [15–17].  相似文献   

6.
Analytical expressions are derived for dispersion and attenuation of Rayleigh waves propagating along the statistically rough free surface of a hexagonal crystal (Z cut). The roughness under consideration is one-dimensional (the profile function of the roughness depends on one coordinate) and has the form of hollows of a random lattice. The results obtained earlier in the solution of an analogous problem for a two-dimensional roughness are used in the one-dimensional case. The relationships derived for the dispersion and attenuation of Rayleigh waves are treated analytically and numerically over the entire range of frequencies acceptable in the framework of the perturbation theory. It is shown that the dispersion and attenuation of Rayleigh waves are qualitatively similar to those observed in an isotropic medium.  相似文献   

7.
We present a reciprocity and unitarity preserving formulation of the scattering of a scalar plane wave from a two-dimensional, randomly rough surface on which the Neumann boundary condition is satisfied. The theory is formulated on the basis of the Rayleigh hypothesis in terms of a single-particle Green's function G(q|k) for the surface electromagnetic waves that exist at the surface due to its roughness, where k and q are the projections on the mean scattering plane of the wave vectors of the incident and scattered waves, respectively. The specular scattering is expressed in terms of the average of this Green's function over the ensemble of realizations of the surface profile function (G(q|k)). The Dyson equation satisfied by (G(q|k)) is presented, and the properties of the solution are discussed, with particular attention to the proper self-energy in terms of which the averaged Green's function is expressed. The diffuse scattering is expressed in terms of the ensemble average of a two-particle Green's function, which is the product of two single-particle Green's functions. The Bethe-Salpeter equation satisfied by the averaged two-particle Green's function is presented, and properties of its solution are discussed. In the small roughness limit, and with the irreducible vertex function approximated by the sum of the contribution from the maximally-crossed diagrams, which represent the coherent interference between all time-reversed scattering sequences, the solution of the Bethe-Salpeter equation predicts the presence of enhanced backscattering in the angular dependence of the intensity of the waves scattered diffusely.  相似文献   

8.
The phase velocity dispersion and the inverse attenuation length of surface acoustic waves of shear horizontal polarization propagating along a free flat (smooth) surface of a hexagonal crystal (Z cut) in the presence of a thin (compared to the wavelength) structurally damaged surface layer are found in the analytical form. It is shown that, in the long-wavelength limit (the wavelength is large compared to the characteristic size of layer inhomogeneities), which is of the greatest interest to experimenters, the change in the phase velocity dispersion and the change in the inverse attenuation length are proportional to the third and sixth powers of the wave frequency, respectively. The inverse attenuation length is numerically calculated.  相似文献   

9.
Green's functions are derived for elastic waves generated by a volume source in a homogeneous isotropic half-space. The context is sources at shallow burial depths, for which surface (Rayleigh) and bulk waves, both longitudinal and transverse, can be generated with comparable magnitudes. Two approaches are followed. First, the Green's function is expanded with respect to eigenmodes that correspond to Rayleigh waves. While bulk waves are thus ignored, this approximation is valid on the surface far from the source, where the Rayleigh wave modes dominate. The second approach employs an angular spectrum that accounts for the bulk waves and yields a solution that may be separated into two terms. One is associated with bulk waves, the other with Rayleigh waves. The latter is proved to be identical to the Green's function obtained following the first approach. The Green's function obtained via angular spectrum decomposition is analyzed numerically in the time domain for different burial depths and distances to the receiver, and for parameters relevant to seismo-acoustic detection of land mines and other buried objects.  相似文献   

10.
Yang L  Lobkis OI  Rokhlin SI 《Ultrasonics》2011,51(6):697-708
Longitudinal and transverse wave attenuation coefficients are obtained in a simple integral form for ultrasonic waves in cubic polycrystalline materials with elongated grains. Dependences of attenuation on frequency and grain shape are described in detail. The explicit analytical solutions for ellipsoidal grains in the Rayleigh and stochastic frequency limits are given for a wave propagating in an arbitrary direction relative to ellipsoid axes. The attenuation exhibits classic frequency dependence in those frequency limits. However, the dependence on the grain shape in the stochastic limits is unexpected: it is independent of the cross-section of the ellipsoidal grains and depends only on the grain dimension in the propagation direction. In the Rayleigh region attenuation is proportional to effective volume of the ellipsoidal grain and is independent of its shape. A complex behavior of attenuation on the grain shape/size and frequency is exhibited in the transition region. The results obtained reduce to the classic dependences of attenuation on parameters for polycrystals with equiaxed grains.  相似文献   

11.
12.
Abstract

By the use of the reduced Rayleigh equation for the amplitude of a surface plasmon polariton on a one-dimensional randomly rough metal surface that is in contact with vacuum, we calculate the dispersion and damping of the surface electromagnetic wave to the lowest nonzero order in the rms height of the surface. It is found that the frequency of the surface plasmon polariton is depressed by the surface roughness. The attenuation of the surface plasmon polariton in the long wavelength limit is due primarily to its scattering into other surface plasmon polaritons, while in the short wavelength limit it is due primarily to its roughness-induced scattering into volume electromagnetic waves in the vacuum. The energy mean free path of the surface plasmon polariton is shorter on a randomly rough metal surface than it is on a lossy planar metal surface, and the surface plasmon polariton is more tightly bound to a rough surface than to a planar one.  相似文献   

13.
Attenuation of the Rayleigh waves propagating along an irregular surface of an empty borehole is investigated. This problem generalizes the problem on the attenuation of Rayleigh waves by an irregular boundary of a half-space. The technique used to evaluate the attenuation coefficient is based on the perturbation method and the mean field method. As a result, an expression is obtained that relates the partial attenuation coefficients of the surface Rayleigh wave to the scattering by the irregular surface of an empty borehole into the bulk longitudinal and transverse waves (the RP and RS processes) and into the surface Rayleigh waves (the RR processes). The frequency-dependent behavior of the partial attenuation coefficients is analyzed for different correlation functions of irregularities.  相似文献   

14.
A new experimental method has been devised that directly determines the group velocities of surface acoustic waves. A point source and a point detector are employed to measure the ultrasonic transmission across a solid surface as a continuous function of the propagation direction. Results for single pulses give the times-of-flight for both Rayleigh surface waves (RSW's) and pseudo-surface-waves (PSW's). Calculations and measurements of the group velocities of the surface waves on silicon show some unanticipated behavior: fluid loading qualitiatively changes the group velocity curves for both RSW and PSW. In particular, the RSW branch gains an additional component which we denote here as an induced Rayleigh wave (IRW). If a wave train is employed in the experiment, the analog of phonon focusing is observed for the ultrasonic waves, modified by internal-diffraction effects. Systematic measurements of the wave intensities on silicon as a function of propagation distance are consistent with expected acoustic losses into the surrounding water: the attenuation length of a wave depends on the mode and frequency. A survey of surface-wave images on other crystals is included in this study.  相似文献   

15.
In the present paper, the propagation of Rayleigh waves in a strongly heterogeneous medium is discussed. Scattering of stress waves is a difficult scientific problem. Specifically, the interaction of surface waves with distributed inhomogeneity seems highly complicated due to the existence of two displacement components. Rayleigh waves undergo significant attenuation and velocity change depending on the frequency and the inhomogeneity content. The aim of this study is to highlight the dispersive behavior of concrete, especially when damaged, and increase the experimental data in an area where the work is limited.  相似文献   

16.
Attenuation of Stoneley waves and higher Lamb modes propagating along an irregular surface of a fluid-filled borehole is investigated. This problem generalizes the problem on the attenuation of Rayleigh waves by an irregular surface of an empty borehole [10]. The technique used to evaluate the attenuation coefficient is based on the perturbation method (surface irregularity heights are considered to be small in comparison with the wavelength) and the mean field method. As a result, an expression is obtained for the partial coefficients of the eigenmode attenuation due to the scattering of eigenmodes by the irregularities of the borehole walls into the same or other eigenmodes, as well as into the bulk longitudinal and transverse waves. The frequency-dependent behavior of the partial attenuation coefficients of both Stoneley waves and higher modes is analyzed against the ratio between the irregularity correlation length and the borehole radius for different correlation functions of irregularities.  相似文献   

17.
Abstract

The mean-field method is used to analyse longitudinal and transverse (both SV- and SH-type) wave propagation in an unbounded randomly stratified solid medium. It is assumed that elastic moduli of the medium are constant while a density is a random function of the cartesian coordinate z. For a case of small density fluctuations, expressions are obtained for z-components of effective propagation vectors of P-, SV- and SH-waves for arbitrary relations between wavelengths and a correlation length of the random inhomogeneities. It is shown, that when the correlation length is small in comparison with the wavelengths, the mean-field attenuation coefficients are proportional to the frequency squared. In this case P- and SV-waves convert into each other. When the correlation length is large in comparison with the wavelengths, the mean-field attenuation coefficients are also proportional to the frequency squared, but in this case P- and SV-waves propagate independently.  相似文献   

18.
It is shown that unlike undamped waves, the dispersion characteristics of spin surface waves with dissipation have a maximum wave number at which there is a downward reversal in the dispersion curve of a wave number. This forms the upper branch of a dispersion curve with inverse dispersion and high attenuation, leading to an unclear frequency dependence of the wave vector. The lower primary dispersion branch corresponds to waves with forward dispersion, and attenuation is proportional to the small parameter of dissipation. However, the coefficient of wave attenuation grows sharply near the maximum wave number. Some angular and frequency limits of surface wave propagation change as well.  相似文献   

19.
The dispersion relation for Rayleigh waves on a grating-surface of a semi-infinite, isotropic, nondissipative, elastic medium is solved numerically, with complex wave vector k or complex frequency, in the radiative region (above the bulk transverse sound-line) and within the first frequency-gap on the Brillouin zone boundary created by the grating periodicity. The acoustic attenuation, found from the imaginary part of k, agrees well with experiment. A dispersive branch, with corresponding complex-solutions for the flat surface, between the bulk transverse and longitudinal sound-lines, representing a new leaky mode or surface resonance, accounts for the principal peak in the attenuation.  相似文献   

20.
The problem of the scattering of a Rayleigh wave by a surface inhomogeneity of the mass density of an isotropic solid is solved in the Born approximation of perturbation theory. The inhomogeneity is statistical with a Gaussian correlation function in the plane parallel to the surface and is deterministic with an exponentially decaying dependence on the coordinate perpendicular to the surface. Expressions are derived for the displacement fields in the scattered longitudinal (P), transverse (SV and SH), and Rayleigh (R) waves at large distances from the inhomogeneity. The Rayleigh wave energy scattering coefficients are calculated as functions of the wavelength λ, the correlation length a of the inhomogeneity, the depth d of the defective layer, and the Poisson ratio of the medium, σ. The angular distribution of the scattered Rayleigh wave energy is determined. Asymptotic expressions are obtained for the scattering coefficient in various limiting cases with respect to the parameters a/λ and λ/d. The relation between the energies in the scattered P, SV, SH, and R waves is established. The resulting equations are used to calculate the scattering coefficients numerically over a wide range of variation of the parameters a/λ, λ/d, and σ; the results are presented in the form of graphs and a table. A physical pattern of the scattering process is constructed and used as a basis for interpreting the results of the study. Fiz. Tverd. Tela (St. Petersburg) 39, 267–274 (February 1997)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号