首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The complexes [Bu4N]2+[PtBr6]2− (I), [Ph4P]2+[PtBr6]2− (II), and [Ph3(n-Am)P]2+ (III) are synthesized by the reactions of tetrabutylammonium bromide, tetraphenylphosphonium bromide, and triphenyl(n-amyl)-tetraphenylphosphonium bromide, respectively, with potassium hexabromoplatinate (mole ratio 2: 1). After recrystallization from dimethyl sulfoxide, complexes I, II, and III transform into [Bu4N]+[PtBr5(DMSO)] (IV), [Ph4P]+[PtBr5(DMSO)] (V), and [Ph3(n-Am)P]+[PtBr5(DMSO)] (VI). According to the X-ray diffraction data, the cations of complexes IVVI have a slightly distorted tetrahedral structure. The N-C and P-C bond lengths are 1.492(7)–1.533(6) and 1.782(10)–1.805(10) ?, respectively. The platinum atoms in the mononuclear anions are hexacoordinated. The dimethyl sulfoxide ligands are coordinated with the Pt atom through the sulfur atom (Pt-S 2.3280(18)–2.3389(11) ?). The Pt-Br bond lengths are 2.4330(6)–2.4724(6) ?.  相似文献   

2.
Abstract

The imido derivates of 2-trifluoroacetylphenol, 1 (R1=H, Me, iPr) react with the isocyanatophosphites (R2O)2PNCO, 2 (R2[dbnd]Et, R2-R2[dbnd]CMe2-CMe2) to yield the bicyclic compounds 3, wheras in case of 1 (R1[dbnd](CH2)2NMe2) the λ3σ3P compounds 4 are found. The phosphorus(III) chlorides R3PC12 (R3[dbnd]Ph, OEt) and 1 (R1[dbnd]H, Me) give rise to furnish the tricyclic phosphoranes 5. However with 1 (R1[dbnd]iPr) phosphite 6 is obtained, which adds hexafluoracetone to give the 1,3,2λ5σ5-dioxaphospholane 7. 2-(Trifluoracetoxy)pyridine 8. reacts with Tris(trimethylsily1)phosphite to yield the bis(phosph0nate) 10. Some molecular structures are discussed on the basis of x-ray diffraction results.  相似文献   

3.
The synthesis of novel dithiophosphate derivatives has been achieved. Two O,O′-alkanediyl S-(N-phthalimidomethyl) dithiophosphates and two Zinc bis(O,O′-alkanediyl) dithiophosphates are synthesized by an easy and facile chemical synthetic route. Zinc bis[O,O′-(2-methylpentane-2,4-diyl) dithiophosphate] L1, Zinc bis[O,O′-(2-ethylhexane-1,3-diyl) dithiophosphate] L2, O,O′-(2-methylpentane-2,4-diyl) S-(N-phthalimidomethyl) dithiophosphate L3 and O,O′-(2-ethylhexane-1,3-diyl) S-(N-phthalimidomethyl) dithiophosphate L4 are synthesized from the respective ammonium salts. Compounds L1, L2, L3, and L4 are characterized by (CHN) elemental analysis, ESI mass, FT-IR, 1H, 13C, and 31P NMR techniques. The crystal structure of ammonium O,O′-(2-methylpentane-2,4-diyl) dithiophosphate is discussed. L1, L2, L3, and L4 were evaluated for antimicrobial activity. It was found that the phthalimide derivatives L3 and L4 showed much better antifungal potential against some species of fungus. The Zinc dithiophosphates L1 and L2 showed good antibacterial activity against Bacillus cereus and Escherichia coli.  相似文献   

4.
In the design of extended supramolecular solids, reliable synthons are a valuable commodity. This work concerns the complementary second-sphere coordination interactions between a highly preorganized hexasulphonated ligand, L, and aquated metal ions. Four second-sphere inclusion complexes [M(H2O)6]2 L ·(S)3 (M/S: Mg/acetone, 1; Zn/acetone, 2, Mg/dioxane, 3; Zn/dioxane, 4) and three extended networks {[(M(H2O)3)2(L)]·(H2O)14.5} (M=Cr, 5; Fe, 6; Al, 7) have been structurally characterized by X-ray crystallography. The second-sphere effects on the stabilization of the primary coordination sphere are illustrated by TGA experiments. In these assemblies, the potential of a new supramolecular synthon is illustrated, that being the complementary hydrogen-bonding interaction between cis-aquo ligands and sulphonate oxygen atoms.  相似文献   

5.
2-Aminobenzoylhydrazide (abh) reacts with equimolar amounts of either [VIVO(acac)2] or [VIVO(bzac)2] (where acac? and bzac? are the monoanionic forms of acetylacetone (Hacac) and benzoylacetone (Hbzac), respectively) in the presence of equimolar amounts of 1,10-phenanthroline (phen) to form the octahedral mixed-ligand complexes [VIVO(L1)(phen)] (1) and [VIVO(L2)(phen)] (2), where (L1)2? and (L2)2? are the dianionic forms of the 2-aminobenzoylhydrazone of acetylacetone (H2L1) and benzoylacetone (H2L2). Upon substituting phen by 8-hydroxyquinoline (Hhq), pentavalent [VVO(L1)(hq)] (3) and [VVO(L2)(hq)] (4) complexes were instead obtained. In the crystal structures of 3 and 4, the hydrazone ligands coordinate to the vanadium center through the enolic-O, one imine-N and amide-O in a mer geometry. The amine and the second imine nitrogen form intramolecular hydrogen bonds. Complexes 1 and 2 display quasi-reversible one-electron oxidation peaks near +0.60 V, while the pentavalent 3 and 4 exhibit quasi-reversible one-electron reduction peaks near ?0.18 V versus Ag/AgCl in CH2Cl2 solution. EPR spectroscopic studies on 1 and 2 suggest that the unpaired electron is present in the dxy orbital. DFT studies for 3 indicate that the dxy orbital of vanadium is the main contributor to the LUMO.  相似文献   

6.
The reactions of copper(II) chloride with a series of N1-substituted thiosemicarbazones, {R1(H)C2=N3–N2(H)–C1(=S)–N1HMe, R1 = furan, Hftsc-N-Me; thiophene, Httsc-N-Me; phenyl, Hbtsc-N-Me} in 1 : 2 molar ratio yield copper(I) complexes : sulfur-bridged dinuclear complexes, [Cu2Cl2(μ-S-Hftsc-N-Me)21-S-Hftsc-N-Me)2] (1), [Cu2Cl2(μ-S-Httsc-N-Me)21-S-Httsc-N-Me)2] (2), and a mononuclear complex [CuCl(η1-S–Hbtsc-N-Me)2] (3). Complexes 1–3 have been characterized by elemental analysis (C, H, N), spectroscopy (IR, 1H NMR) and X-ray crystallography. The Cu(μ-S)2Cu cores in 1 and 2 form parallelograms with unequal bond distances {Cu–S, 2.2831(3), 2.5955(4) Å (1); 2.2641(9), 2.8006(10) Å (2)}. Bond angles at sulfur and copper are, Cu–S–Cu, S–Cu–S, 69.86(11), 110.12(17)° (1); 75.84(3), 104.16(3)° (2), respectively. The Cu ··· Cu separations are 2.806 Å (1) and 3.141 Å (2) with each copper center a distorted tetrahedron (96.67–119.28°). Bond parameters of 3, Cu–S, 2.227(3), 2.224(3) Å, and 118.97–121.11° are different.  相似文献   

7.
 The structures and isomerization pathways of various HC2P isomers in both singlet and triplet states are investigated at the B3LYP/6-311G(d,p), QCISD/6-311G(d,p) (for isomers only) and single-point CCSD(T)/6-311G(d,p)//B3LYP/6-311G(d,p) levels. At the CCSD(T)/6-311G(d,p)//B3LYP/6-311G(d,p) level, the lowest-lying isomer is a linear HCCP structure 3 1 in the 3 state. The second low-lying isomer has a CPC ring with exocyclic CH bonding 1 5 in a singlet state at 10.5 kcal/mol. The following third and fourth low-lying isomers are a singlet bent HCCP structure 1 1 at 20.9 kcal/mol and a bent singlet HPCC structure 1 3 at 35.8 kcal/mol, respectively. Investigation of the HC2P potential-energy surface indicates that in addition to the experimentally known isomer 3 1, the other isomers 1 1, 1 3 and 1 5 also have considerable kinetic stability and may thus be observable. However, the singlet and triplet bent isomers HCPC 1 2 and 3 2 as well as the triplet bent isomer HPCC 3 3 are not only high-lying but are also kinetically unstable, in sharp contrast to the situation of the analogous HCNC and HNCC species that are both kinetically stable and that have been observed experimentally. Furthermore, the reactivity of various HC2P isomers towards oxygen atoms is briefly discussed. The results presented here may be useful for future identification of the completely unknown yet kinetically stable HC2P isomers 1 1, 1 3 and 1 5 either in the laboratory or in interstellar space. Received: 5 November 2000 / Accepted: 25 November 2001 / Published online: 8 April 2002  相似文献   

8.
Three new diorganotin(IV) complexes, [Me2Sn(L)] (2), [Bu2Sn(L)] (3), and [Ph2Sn(L)] (4) [where H2L (1) = 2-hydroxy-5-methylbenzaldehyde-N(4)-cyclohexylthiosemicarbazone] have been synthesized by reacting the corresponding diorganotin(IV) dichloride with H2L (1) in absolute methanol in the presence of potassium hydroxide. All the compounds have been characterized by CHN analyses, UV–vis, FT-IR, 1H, 13C, and 119Sn NMR spectroscopy. The molecular structures of H2L (1) and 2 have been confirmed by single crystal X-ray diffraction analysis. H2L (1) is found to be in the thiol tautomeric form. The X-ray structure of 2 showed that H2L is a tridentate ligand and binds to the tin(IV) atom via the phenolic oxygen, azomethine nitrogen, and thiolate sulfur. Complex 2 has a triclinic structure and the coordination geometry of tin(IV) is distorted trigonal bipyramidal. The sulfur and oxygen are in axial positions while the azomethine nitrogen of 1 and two methyl groups occupy the equatorial positions. The C-Sn-C angles determined from 1J(119Sn, 13C) for 2, 3, and 4 are 124.35°, 123.11°, and 123.82°, respectively. The values of δ(119Sn) for 2, 3, and 4 are ?153.4, ?180.59, and ?158.3 ppm, respectively, indicating five-coordinate tin(IV). From NMR data a distorted trigonal-bipyramidal configuration at each tin is proposed.  相似文献   

9.
Four new mononuclear complexes, [Ni(L1)(NCS)2] (1), [Ni(L2)(NCS)2] (2), [Co(L1)(N3)2]ClO4 (3), and [Co(L2)(N3)2]ClO4 (4), where L1 and L2 are N,N′-bis[(pyridin-2-yl)methylidene]butane-1,4-diamine and N,N′-bis[(pyridin-2-yl)benzylidene]butane-1,4-diamine, respectively, have been prepared. The syntheses have been achieved by reaction of the respective metal perchlorate with the tetradentate Schiff bases, L1 and L2, in presence of thiocyanate (for 1 and 2) or azide (for 3 and 4). The complexes have been characterized by microanalytical, spectroscopic, single crystal X-ray diffraction and other physicochemical studies. Structural studies reveal that 14 are distorted octahedral geometries. The antibacterial activity of all the complexes and their constituent Schiff bases have been tested against Gram-positive and Gram-negative bacteria.  相似文献   

10.
The reaction of the potassium salt of the N-(thio)phosphorylated thioureas AdNHC(S)NHP(O)(OiPr)2 (HLI , Ad = Adamantyl) and MeNHC(S)NHP(S)(OiPr)2 (HLII ) with Co(II) and Zn(II) in aqueous EtOH leads to [MLI,II 2] chelate complexes. They were investigated by UV-vis, 1H and 31P NMR spectroscopy, and microanalysis. The molecular structures of [MLI 2] were elucidated by single crystal X-ray diffraction analysis. The metal centers in both complexes are found to be in a distorted-tetrahedral O2S2 environment formed by the C=S sulfur atoms and the P=O oxygen atoms of two deprotonated LI ligands. The photoluminescence properties of [ZnLII 2] are also reported.  相似文献   

11.
Schiff bases o-vanilidene-1-aminobenzene (HL1) and o-vanilidene-2-methyl-1-aminobenzene (HL2) lead to the formation of mono- and bis-[(Cl)Zn(L1)] (1), [(Cl)Zn(L2)] (2), [(Cl)Hg(L1)] (3), [(Cl)Hg(L2)] (4), [Zn(L1)2] (5), [Zn(L2)2] (6), [Hg(L1)2] (7), and [Hg(L2)2] (8) complexes by reactions of zinc(II) and mercury(II) chlorides in different mole ratio(s). Complexes 18 have been characterized by elemental analyses (Zn, Hg, C, H, Cl, and N), melting point and spectral (IR, 1H-NMR), PXRD, molar conductivity measurement, and TGA. Conductivity measurements suggest non-electrolytes. Structural compositions have been assigned by mass spectral studies. Four-coordinate geometry may be assigned to these complexes tentatively. Structural study reveals that in 14 two metal centers are held together by two bridged (μ2-Cl) chlorides, whereas 58 contain two bidentate Schiff-base ligands around one metal-producing monomers.  相似文献   

12.
Solvothermal reactions of terphenyl-2,5,2′,5′-tetracarboxylic acid (H4qptc) and MII (M = Mn, Fe) in the presence of 1,2-bis(diphenylphosphino)ethane (dppe) afford two new coordination polymers, [M(qptc)(dppe-O)] n (M?=?Mn (1), Fe (2)) (1,2-bis(diphenylphosphoryl)ethane?=?dppe-O). The structures have been determined by single-crystal X-ray diffraction analyses and further characterized by elemental analyses, IR, TGA, and magnetism. The MII in 1 and 2 are linked by qptc4? to form 2-D layers, which are further connected via the oxidized dppe (dppe-O) exhibiting a (4,6)-connected network with the (54.62)(510.63.7.8) topology.  相似文献   

13.
Abstract

The synthesis and characterization of the dinuclear Cu(II) complex [Cu(μ2-OH){Ph2P(O)NP(O)Ph21O,O′}(1,10-phen-κ2N,N′)]2·2H2O (1), 1,10-phen?=?1,10-phenanthroline, is described. X-ray crystallographic studies reveal that the Cu(II) centers of 1 are bridged by two OH? groups and are coordinated by the (O,O)?= Ph2P(O)NP(O)Ph2? ligand in a monodentate fashion, unprecedented for Cu(II). The crystal lattice of 1 also contains H2O molecules, which are involved in the formation of a hydrogen bonding network with bridging OH? groups and noncoordinated O atoms of the (O,O) ligand. These H2O molecules are arranged in the crystal lattice of 1 as tetrameric clusters. The packing of molecules in the structure of 1 was investigated by Hirshfeld Surface analysis.  相似文献   

14.
Abstract

The thioesters R1R2P(X)SR (X=O,S) 1 to 4 are degradated oxidatively forming R1R2P(O)OH and R-SO3H. The influence of the following parameters on the oxidation course is investigated using standard conditions: pH, concentration of the hypochlorite, quality of the organic phase and cooperation of phase transfer catalysts and hypochlorite cations.

The thioesters 1 to 4 are degradated by hypochlorite with different rates depending on the type of the ligands R1 and R2 and the employment of an optimal pH. An analytical evaluation is possible.

Die Thioester R1R2P(X)SR (X=O,S) 1 bis 4 werden durch Hypochlorit oxidativ zu R1R2P(O)OH und RSO3H abgebaut. Der Einfluß folgender Parameter auf den Oxidationsverlauf unter Standardbedingungen wird untersucht: pH, Hypochloritkonzentration, Art der organischen Phase, Mitwirkung von Phasentransfer-Katalysatoren und der Hypochlorit Kationen.

Die Thioester 1 bis 4 werden mit Hypochlorit in Abhängigkeit vom Typ der Liganden R1 und R2 und nach Einstellen eines optimalen pH-Wertes unterschiedlich schnell abgebaut. Dieser Unterschied ist analytisch auswertbar.  相似文献   

15.
Three new crystalline complexes are synthesized: [K(18-crown-6)]+ · An, where An = [FeCl4]?(I), [FeBr2Cl2]? (II), and [FeBr4]? (III). The crystals of compounds I–III are cubic and isomorphic, space group Fd $ \bar 3 Three new crystalline complexes are synthesized: [K(18-crown-6)]+ · An, where An = [FeCl4](I), [FeBr2Cl2] (II), and [FeBr4] (III). The crystals of compounds I–III are cubic and isomorphic, space group Fd (Z = 16): a = 20.770(2) ? for I, 20.844(3) ? for II, and 20.878(4) ? for III. Structures I–III are solved by a direct method and refined by the full-matrix least-squares method in the anisotropic approximation to R = 0.047 (I), 0.059 (II), and 0.098 (III) for all 680 (I), 684 (II), and 686 (III) independent reflections. In two tetrahedral anions [Fe(1)X4] and [Fe(2)X4] in structures I–III, all halogen atoms (X = Cl and Br) are randomly disordered over three close positions relative to the crystallographic axes 3. Structures I–III contain the [K(18-crown-6)]+ host-quest complex cation. The K+ cation (CN = 8) resides in the cavity of the 18-crown-6 ligand and coordinated by its six O atoms and two disordered halogen X atoms. The coordination polyhedron of the K+ cation in complexes I–III is a distorted hexagonal bipyramid. Original Russian Text ? A.N. Chekhlov, 2008, published in Zhurnal Neorganicheskoi Khimii, 2008, Vol. 53, No. 9, pp. 1566–1570.  相似文献   

16.
Three Zn(II) complexes, [Zn2(bpp)2(FNA)2]·H2O (1), [Zn(bpp)(FNA)]·H2O (2), and Zn2(bpp)2(FNA)2 (3) (bpp = 1,3-bi(4-pyridyl)propane, H2FNA = 4-nitrobenzene-1,2-dicarboxylic acid), were synthesized and characterized by single-crystal and powder X-ray diffraction methods, IR spectroscopy, TG analyses, elemental analyses, and fluorescent analysis. In 1, the Zn(II) ions are linked by FNA anions and bpp into 2-D layers. The Zn(II) ions in 2 are bridged by FNA anions into chiral chains, which are interlinked by bpp into 3-D metal–organic framework with (65·8) CdS topology. Complex 3 features 1-D zigzag chains, which are interconnected by bpp ligands to give a 3-D framework with (6·74·8)(64·7·8) topology. Complexes 2 and 3 exhibit significant ferroelectric behavior (for 2 remnant polarization Pr = 0.050 μC cm?2, coercive field Ec = 1.13 kV cm?1, saturation of the spontaneous polarization Ps = 0.239 μC cm?2; for 3 Pr = 0.192 μC cm?2, Ec = 4.64 kV cm?1, Ps = 0.298 μC cm?2).  相似文献   

17.
New complexes of bivalent Co, Ni, and Cu with isatin aminoguanisone (HL) and nitroaminoguanisone (HL1) of the composition ([Co(HL)2]Cl2 (I), [Ni(HL)2]Cl2 (II), [Cu(L)Cl] (III), [Co(L1)2] (IV), [Ni(L1)2] (V), and [Cu(L1)2] (VI) are synthesized. Their molecular conductivities and effective magnetic moments are measured and thermal stabilities are studied. The type of the ligand coordination in IVI is proposed on the basis of IR data. The summary of physicochemical data for IVI and the energy calculations for their molecules by the molecular mechanics method made it possible to establish stoichiometry of the coordination polyhedra of the complexes.  相似文献   

18.
Abstract

Two new mixed-valence iron complexes with 2-pyridyl oximes, [Fe(mpko)3Fe(H2O)2(NO3)](NO3)·2H2O (1) (mpko? = methyl(2-pyridyl)ketone oximate) and [{Fe(dpko)3}2Fe](ClO4)·4H2O (2) (dpko? = bis(2-pyridyl)ketone oximate), have been prepared by reaction of FeIII with mpkoH in methanol (1) and FeII with dpkoH in methanol/water (2). Dinuclear FeII(low-spin)FeIII(high-spin) and trinuclear FeII(low-spin)FeIII(high-spin)FeII(low-spin) cations are present in the crystal structure of 1 and 2, respectively. Intermolecular hydrogen bonds in 1 lead to weak antiferromagnetic interactions between pairs of neighboring FeIII centers, which allows observation of single-ion zero-field splitting effects.  相似文献   

19.
The gas-phase fragmentation reactions of singly charged angiotensin II (AngII, DR+VYIHPF) and the ozonolysis products AngII+O (DR+VY*IHPF), AngII+3O (DR+VYIH*PF), and AngII+4O (DR+VY*IH*PF) were studied using SID FT-ICR mass spectrometry, RRKM modeling, and molecular dynamics. Oxidation of Tyr (AngII+O) leads to a low-energy charge-remote selective fragmentation channel resulting in the b 4 +O fragment ion. Modification of His (AngII+3O and AngII+4O) leads to a series of new selective dissociation channels. For AngII+3O and AngII+4O, the formation of [MH+3O] + −45 and [MH+3O] + −71 are driven by charge-remote processes while it is suggested that b 5 and [MH+3O] + −88 fragments are a result of charge-directed reactions. Energy-resolved SID experiments and RRKM modeling provide threshold energies and activation entropies for the lowest energy fragmentation channel for each of the parent ions. Fragmentation of the ozonolysis products was found to be controlled by entropic effects. Mechanisms are proposed for each of the new dissociation pathways based on the energies and entropies of activation and parent ion conformations sampled using molecular dynamics.  相似文献   

20.
Preparation of the ligands HL1 = 2,6-[(N-phenylpiperazin-1-yl)methyl]-p-ethylphenol; HL2 = 2,6-[(N-phenylpiperazin-1-yl)methyl]-p-methoxyphenol and HL3 = 2,6-[(N-phenylpiperazin-1-yl)methyl]-p-nitrophenol are described together with their Cu(II) complexes with different bridging units. The exogenous bridges incorporated into the complexes are: hydroxo [Cu2L(OH)(H2O)2](ClO4)2.H2O (L1=1a, L2 =1b, L3 =1c), acetato [Cu2L(OAc)2]ClO4.H2O (L1 =2a, L2 =2b, L3 =2c) and nitrito [Cu2L1(NO2)2(H2O)2]ClO4.H2O (L1=3a, L2 =3b, L3 =3c). Complexes1a,1b,1c and2a,2b,2c contain bridging exogenous groups, while3a,3b,3c possess only open μ-phenolate structures. Both the ligands and complexes were characterized by spectral studies. Cyclic voltammetric investigation of these complexes revealed that the reaction process involves two successive quasireversible one-electron steps at different potentials. The first reduction potential is sensitive to electronic effects of the substituents at the aromatic ring of the ligand system, shifting to positive potentials when the substituents are replaced by more electrophilic groups. EPR studies indicate very weak interaction between the two copper atoms. Various covalency parameters have been calculated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号