首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
A series of polydimethylsiloxane (PDMS) with varied molecular weights (M_w=3×10~6,1×10~6 and 0.5×10~6) were melt blended with PP to investigate the effect of PDMS molecular weight (MW) on the morphology and mechanical properties of PP/PDMS blends.Scanning electron microscopic (SEM) examination showed that the size of PDMS domains was dependent on the MW of PDMS.It was found that the lower the value of PDMS MW,the better dispersion of the PDMS domains in the PP matrix.Tensile and Izod impact tests reveale...  相似文献   

2.
This work focuses on the effect of electron beam irradiation on the physico‐mechanical, dynamic mechanical and dielectric properties of blends based on ethylene octene copolymer (EOC) and poly dimethyl siloxane (PDMS) rubber. It is found that electron beam irradiation caused considerable improvement in the physico‐mechanical properties; the tensile strength was enhanced by nearly 35% for 70:30 EOC:PDMS blend. Phase morphology of the blends analyzed before irradiation by scanning electron microscopy (SEM) exhibited droplet/matrix morphology with sizes of the PDMS rubber domain varying from 0.55 µm to 0.47 µm as the amount of PDMS rubber decreased from 30 wt% to 10 wt%. This reduction in the PDMS rubber domain has been correlated with the physico‐mechanical properties of the blends. Further, the dynamic mechanical properties and creep behavior of these EOC:PDMS blends before and after irradiation has been studied. It is inferred that the 70:30 blend after radiation crosslinking shows a 17% decrease in the creep compliance, i.e. higher creep resistance compared to neat blends. All the radiation crosslinked blends exhibited lower dielectric constant, lower dielectric loss and higher electrical resistivity as compared to the virgin blends which makes it suitable for cable insulating application. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

3.
采用熔融挤出法制备了不同相容剂含量的PP/POE共混体系,测试了不同体系的脆韧转变温度、热性能和力学性能.结果表明,乙烯-丙烯多嵌段共聚物相容剂的加入降低了PP/POE共混物的脆韧转变温度,提高了共混物的韧性.AFM和STEM照片显示相容剂的加入减小了橡胶分散相的临界粒子间距,PP和POE在两相界面结合处相互扩散或渗透,实现了POE弹性体在PP树脂中合适的尺度分布以及良好的形态分散.当相容剂含量达到10%时,POE分散相尺寸细小均匀,分散相粒子粒径为0.54μm,粒子间距为0.1 μm,PP结晶链段更多地插入到弹性体内部,弹性体POE分散相形成明显的“硬核-软壳”结构.DSC曲线中结晶峰和熔融峰的变化说明适量的相容剂对于材料结晶度的提高具有一定的促进作用.力学性能测试结果可以看出相容剂的加入在提高材料韧性,降低其脆韧转变温度的同时也保持了材料的刚性性能.  相似文献   

4.
Controllable phase segregation adjustment for immiscible polymer blends has always been tough, which hinders the development of amphiphilic antifouling coatings from more accessible blends. Herein, methacrylated poly(dimethylsiloxane) (PDMS‐MA) was synthesized and mixed with poly(ethylene glycol)methylether methacrylate (PEG‐MA). It was interestingly discovered that these PDMS‐MA/PEG‐MA blends displayed upper critical solution temperatures (UCST) due to thermo‐induced conformational change of PEG‐MA and the UCST changed with PDMS‐MA/PEG‐MA mass ratios. Micro‐/nano‐phase segregation, nanophase segregation, or homogenous morphology were therefore achieved. These PDMS‐MA/PEG‐MA blends with different mass ratios were UV‐cured under varying temperatures to fabricate coatings. Their surface morphology and wettability are readily adjusted by phase segregation. For the first time, highly hydrophilic surface was achieved for coatings with microphase segregation because of the exposure of PEG‐rich domains, which exhibited an enhanced protein resistance against bovine serum albumin (BSA). Anti‐bacterial performance (Shewanella loihica) was also observed for these PDMS/PEG coatings. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 1612–1623  相似文献   

5.
A new method was used to prepare thermoplastic elastomers based on polypropylene (PP)/recycled acrylonitrile butadiene rubber (NBRr) with improved mechanical properties. An epoxy resin (EP) was used as a compatibilizing agent. The effect of EP on mechanical properties, swelling percentage and morphological characteristics of the blends was investigated with different blend compositions. The results showed that the incorporation of EP has improved the tensile strength, Young's modulus and elongation at break of PP/NBRr-EP blends compared with PP/NBRr blends. The enhancement of tensile properties of PP/NBRr-EP blends is due to the better adhesion between the two phases with the incorporation of EP. This is quite evident by scanning electron microscopy of tensile fractured surfaces. PP/NBRr-EP blend exhibits lower stabilization torque and swelling percentage than PP/NBRr blends. The lower stabilization torque is an indication of better processing characteristics.  相似文献   

6.
 This study deals with polydimethylsiloxane (PDMS)/polyvinylidene fluoride (PVDF) composite membranes for propane separation from propane/nitrogen mixtures, which is relevant to the recovery of propane in petroleum and chemical industry. The surface and cross-section morphology of PDMS/PVDF composite membranes was observed by scanning electron microscope (SEM). The surface morphology of PDMS/PVDF composite membranes is very dense. There are three layers, the thin dense top layer, finger-like porous middle layer and sponge-like under layer in the cross-section SEM image of PDMS/PVDF composite membranes. The effects of the types of cross-linking agents and pressure on the membrane permselectivity were investigated. The permeability of nitrogen was independent of feed pressure. However, the permeability of propane increased with the pressure increasing for all membranes. The membrane cured by a tri-functional crosslinker with attached vinyl groups had better performance than the tetra-functional one, in both selectivity and permeation flux. The total permeation flux is 1.769× 10-2 cm3(STP)/(cm2·s) and the separation factor is 19.17 when the mole percent of propane in the gas mixture is 10 at the 0.2 MPa pressure difference and 25°C.  相似文献   

7.
PDMS was used as an additive to TEOS based gels in order to improve macroscopic properties for applications such as thermal insulators. The morphological features developed in the PDMS/TEOS hybrid materials were studied by small-angle x-ray scattering and small-angle light scattering. The thermal properties of the material are controlled by nano-scale morphology. A main feature in the nano-scale is mass-fractal domains. As PDMS is incorporated into the TEOS system, a macroscopic network structure becomes dominant, and toughness is enhanced. A monolithic structure is observed macroscopically. The results indicate that PDMS can be used to develop micron morphologies for toughening these materials. © 1996 John Wiley & Sons, Inc.  相似文献   

8.
The influence of surface nature (hydrophobic and hydrophilic) and concentration of silica nanoparticles on the coalescence behavior of immiscible polydimethylsiloxane (PDMS)/polyisobutylene (PIB) (90/10) blends under simple low-rate shear flow were investigated via optical shear technique. It was found that the coalescence of PIB droplets in PDMS matrix was suppressed efficiently by incorporating hydrophobic silica nanoparticles, and a constant droplet size was obtained at high particle contents. The addition of a small amount (<0.4 wt.%) of hydrophilic silica nanoparticles also decreased the size of PIB droplets. Clusters of small PIB droplets were formed at low filler concentration. When the filler concentration exceeded 0.8 wt.%, the clusters of PIB drops disappeared and elongated PIB threads with large size were formed, which suggest that the coalescence of PIB droplets was promoted. The results indicate that the discrepancy in the morphology evolution of PDMS/PIB blends upon the addition of silica nanoparticles is controlled not only by the surface chemistry of nanoparticles but also by their concentration in the blends.  相似文献   

9.
The effects of styrene-ethylene/propylene (SEP) diblock copolymer on the morphology and mechanical propertiesof polypropylene/polystyrene (PP/PS) blends were investigated. The results showed that SEP diblock copolymer, acting as acompatibilizer in PP/PS immiscible blends, can diminish the coalescence of the dispersed particles, reduce their averageparticle size, change their phase morphologies significantly, and increase the mechanical properties. It was found that SEP has better compatibilization effects on the PP/PS (20/80) blends.  相似文献   

10.
The main objective of this work focused on the chemical modification of polyamide 12 (PA12) properties through the reaction with a hydride‐terminated polydimethylsiloxane (PDMS‐SiH). The investigated PA12/PDMS‐SiH blend was compatibilized by ruthenium derivative catalyzed hydrosilylation reaction in molten state. This original route enhanced interfacial adhesion and avoid PDMS‐SiH leaching phenomenon between the two immiscible phases. More specifically, the size of PDMS‐SiH domains in the blend decreased from around 4 μm to 800 nm and from 30 to 1 μm after compatibilization with 10 and 20 wt % PDMS‐SiH, respectively. For the best compatibilized PA12/PDMS‐SiH blend, the introduction of PDMS lowered the surface free energy and the PA12‐based blend turned from hydrophilic to hydrophobic behavior, as evidenced by the water contact angle measurements. Gas permeability and CO2/H2 and CO2/He gas selectivity were also improved with the increase in PDMS content. Besides, the mechanical properties were enhanced with 13% increase in Young's modulus after in situ compatibilization with 15 wt % PDMS‐SiH. Thermal stability was also improved after compatibilization as the initial degradation temperature of reactive blends obviously increased compared with nonreactive ones. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2018 , 56, 978–988  相似文献   

11.
The effect of electron beam irradiation on the blends of linear low-density polyethylene (LLDPE) and poly dimethyl siloxane rubber (PDMS) prepared over a wide range of compositions starting from 70:30 to 30:70 (LLDPE: PDMS) by varying the radiation doses from 50 to 300 kGy has been studied. The dynamic modulii and dielectric strength of the blends increase on irradiation at 100 kGy as compared to that for the unirradiated blends. Degree of crystallinity and melting behaviour remain unchanged upon irradiation upto a dose of 100 kGy, beyond which it decreases. Thermal stability increases with increase in the proportion of PDMS rubber in the blend as well as on irradiation at 100 kGy. The phase morphology of the blends examined under the SEM exhibit two phase morphology before electron beam irradiation, whereas single phase morphology is observed after electron beam irradiation due to intra- as well as inter-molecular crosslinking leading to a miscible system.  相似文献   

12.
The structure and mechanical properties of the injection‐molded products for the binary blends composed of an isotactic polypropylene (PP) and a rubbery ethylene‐1‐hexene copolymer (EHR) were studied. The following two types of blends were employed: one is the incompatible blend of PP and ethylene‐rich EHR; the other is the compatible blend of PP and 1‐hexene‐rich EHR. The incompatible blend shows a phase‐separated morphology, in which EHR domains in the skin layer highly orient to the flow direction. On the other hand, the compatible blend shows fairly homogeneous morphology in the skin and core regions, in which EHR molecules are dissolved into the amorphous PP region. The measurements of birefringence and infrared dichroism revealed that the magnitude of molecular orientation along the flow direction for the compatible blend is larger than that for the incompatible blend. Nevertheless, it was also found that anisotropy of the mechanical properties for the compatible blend is less prominent, which is attributed to lack of the mechanical connection between neighbor crystalline fragments aligned perpendicular to the flow direction. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 701–713, 1999  相似文献   

13.
马来酸酐接枝热塑性弹性体在PP/PA6共混物中的作用   总被引:10,自引:0,他引:10  
研究了马来酸酐接枝热塑性弹性体 (TPEg )作为增容剂对聚丙烯 (PP) 尼龙 6 (PA6 )共混体系的相容性、相态以及物理力学性能的影响 .研究结果表明TPEg的加入大大改善了PP PA6共混体系的相容性 ,且随TPEg含量的增大分散相粒径明显降低 ,共混物的韧性以及延展性大大提高 ,同时拉伸强度及模量仍保持较好的水平 .TPEg增容的PP PA6共混物的非等温结晶行为的研究表明 ,共混物中PP和PA6的结晶行为不同于各自纯的聚合物 ,PA6作为成核剂使PP的结晶温度提高 ;而PA6由于TPEg的加入 ,出现分级结晶现象 ,一级结晶温度略低于纯PA6的结晶温度 ,且随TPEg含量增大结晶受阻 ,二级结晶温度与PP的接近 .由于PP、PA 6以及TPEg之间存在较强的相互作用 ,三元共混物中PP及PA6的玻璃化转变温度分别较其纯聚合物升高 .基于上述结果 ,提出了本共混体系的结构模型  相似文献   

14.
Summary: A series of poly(propylenes) (PPs) were prepared by slurry polymerization using a MgCl2-supported transition metal catalyst. Two different external donors (EDs) were used: diphenyl dimethoxysilane (DPDMS) and methylphenyl dimethoxysilane (MPDMS). The molecular weight (MW) of the PPs was controlled using molecular hydrogen that was used as a transfer agent. To obtain materials with differing molecular weight and similar tacticities, polymers were fractionated with prep-TREF. DSC analyses of blends of TREF fractions showed that the crystallization behaviour of the polymer blends are strongly affected by the configuration (tacticity) and MW of the PP.  相似文献   

15.
 Polymer-supported ruthenium complexes &#9413;-Phen-Ru-①, &#9413;-Phen-Ru-②, &#9413;-Phen-Ru-③, &#9413;-Phen-Ru-④, &#9413;-Phen-Ru-⑤, &#9413;-Phen-Ru-⑥ and &#9413;-Phen-Ru-⑦ were prepared using aminomethyl polystyrenes of different morphological structures as supports. A variety of alcohols were oxidized efficiently into the corresponding ketones, carboxylic acids or aldehydes with iodosylbenzene (PhIO) catalyzed by aminomethyl polystyrene-supported ruthenium complexes under mild reaction conditions in acetonitrile. The influences of morphological structure of the polymer supporters on the catalytic properties of these metal complexes were investigated in detail.  相似文献   

16.
利用XPS对聚二甲基硅氧烷与聚砜或/和聚对羟基苯乙烯组成的二元和三元多嵌段和接枝共聚物及其共混物进行了研究。结果表明溶液成果的聚合物样品的表面都存在有机硅富集,共混物的表面富集程度等于接枝共聚物,更高于多嵌段共聚物,讨论了有机硅含量和键接结构对有机硅表面富集的影响。  相似文献   

17.
The effect of time-temperature treatment on morphology of polyethylene-polypropylene (PE-PP) blends wasstudied to establish a relationship between thermal history, morphology and mechanical properties. Polypropylene (PP)homopolymers were used to blend with various polyethylenes (PE), including high density polyethylene (HDPE), lowdensity polyethylene (LDPE), linear low density polyethylene (LLDPE), and very and ultra low density polyethylene(VLDPE and ULDPE). The majority of the blends were prepared at a ratio of PE:PP = 80:20, while blends of PP and LLDPEwere prepared at various compositions. Thermal treatment was carried out at temperatures between the crystallizationtemperatures of PP and PEs to allow PP to crystallize first from the blends. On cooling further, PE crystallized too. A verydiffuse PP spherulite morphology in the PE matrix was formed in some partially miscible blends when PP was less than 20%by mass. Droplet-matrix structures were developed in other blends with either PP or PE as dispersed domains in a continuousmatrix, depending on the composition ratio. The scanning electron microscopy (SEM) images displayed a fibrillar structureof PP spherulite in the LLDPE-PP (80:20) and large droplets of PP in the HDPE-PP (80:20) blend, providing larger surfacearea and better bonding in the LLDPE-PP (80:20) blends. This explains why the blends with diffuse spherulite morphologyshowed greater improvement in tensile properties than droplet-matrix morphology blends after time-temperature treatment.  相似文献   

18.
A main-chain liquid crystalline ionomer(MLCI)containing sulfonic group was synthesized by an interfacial condensation reaction.The MLCI was blended with polybutylene terephthalate(PBT)and polypropylene...  相似文献   

19.
A new kind of binary hydrogels composed of poly(dimethylaminoethylmethacrylate) (PDMAEMA) and poly(ethylene oxide) (PEO) with varying weight average molecular weights ((M)w = 5 × 104, 1 × 105 and 2.5 × 106) were prepared by y-irradiation technology. The properties of PDMAEMA/PEO hydrogels obtained were evaluated in terms of gel fraction, gel strength, thermal characterization and swelling behavior. The gel strength and swelling degree of the hydrogels could be improved obviously after adding PEO into the PDMAEMA system, while the degree of improvement decreased with increasing (M)w of PEO. The temperature sensitivity of PDMAEMA/PEO was retained only in the sample with PEO of (M)w = 5 × 104, and the pH sensitivity was retained in samples with PEO of (M)w = 5 × 104 and 1 × 105. When DMAEMA/PEO mixtures containing PEO of (M)w = 5 × 104 were irradiated, the main reaction could be the cross-linking of DMAEMA, and the linear PEO molecular chains could penetrate into the cross-linked network of PDMAEMA. With increasing Mw of PEO, some side reactions were induced, such as grafting of DMAEMA onto PEO molecules, the scission or cross-linking of PEO.  相似文献   

20.
Proton spin-lattice relaxation time (T1H) in the solid state was used to determine the molecular mobility of PP/regenerated tire-rubber blends (PP/RgR), employing low-field NMR. The blends were prepared with different quantities of regenerated rubber (5, 10, 15 and 20 wt%). The addition of 5 wt% maleic anhydride functionalized polypropylene (PP-g-MAH) was carried out to evaluate the processing behavior of the reclaimed material. Important differences were observed concerning the molecular mobility according to the content of regenerated rubber. A decrease in the relaxation time of the blends with an increase in PP-g-MAH content indicates that enhanced mobility of PP/regenerated tire-rubber blends was obtained and, thus, PP-g-MAH acts as a plasticizer and/or impact modified.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号