首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Hydrogen abstraction reactions of the type X(*) + H-H' --> X-H + H'(*) (X = F, Cl, Br, I) are studied by ab initio valence bond methods and the VB state correlation diagram (VBSCD) model. The reaction barriers and VB parameters of the VBSCD are computed by using the breathing orbital valence bond and valence bond configuration interaction methods. The combination of the VBSCD model and semiempirical VB theory leads to analytical expressions for the barriers and other VB quantities that match the ab initio VB calculations fairly well. The barriers are influenced by the endo- or exothermicity of the reaction, but the fundamental factor of the barrier is the average singlet-triplet gap of the bonds that are broken or formed in the reactions. Some further approximations lead to a simple formula that expresses the barrier for nonidentity and identity hydrogen abstraction reactions as a function of the bond strengths of reactants and products. The semiempirical expressions are shown to be useful not only for the model reactions that are studied in this work, but also for other nonidentity and identity hydrogen abstraction reactions that have been studied in previous articles.  相似文献   

2.
The reactions of photochemically generated deuterium atoms of selected initial translational energy with ethane have been investigated. At each initial energy the relative probability of the atoms undergoing reaction or energy loss on collision with ethane was investigated, and the phenomenological threshold energy was measured as 30+/-5kJmol(-1) for the abstraction from the secondary C-H bonds. The ratio of relative yields per bond, secondary:primary was approximately 3 at the higher energies studied. The correlation of threshold energies with bond dissociation energies, heats of reaction and activation energies is discussed for abstraction reactions with several hydrocarbons.  相似文献   

3.
Hydrogen abstraction by growth precursors is the dominant process responsible for reducing the hydrogen content of amorphous silicon thin films grown from SiH(4) discharges at low temperatures. Besides direct (Eley-Rideal) abstraction, gas-phase radicals may first adsorb on the growth surface and abstract hydrogen in a subsequent process, giving rise to thermally activated precursor-mediated (PM) and Langmuir-Hinshelwood (LH) abstraction mechanisms. Using results of first-principles density functional theory (DFT) calculations on the interaction of SiH(3) radicals with the hydrogen-terminated Si(001)-(2x1) surface, we show that precursor-mediated abstraction mechanisms can be described by a chemisorbed SiH(3) radical hopping between overcoordinated surface Si atoms while being weakly bonded to the surface before encountering a favorable site for hydrogen abstraction. The calculated energy barrier of 0.39 eV for the PM abstraction reaction is commensurate with the calculated barrier of 0.43-0.47 eV for diffusion of SiH(3) on the hydrogen-terminated Si(001)-(2x1) surface, which allows the radical to sample the entire surface for hydrogen atoms to abstract. In addition, using the same type of DFT analysis we have found that LH reaction pathways involve bond breaking between the silicon atoms of the chemisorbed SiH(3) radical and the film prior to hydrogen abstraction. The LH reaction pathways exhibit energy barriers of 0.76 eV or higher, confining the abstraction only to nearest-neighbor hydrogens. Furthermore, we have found that LH processes compete with radical desorption from the hydrogen-terminated Si(001)-(2x1) surface and may be suppressed by the dissociation of chemisorbed SiH(3) radicals into lower surface hydrides. Analysis of molecular-dynamics simulations of the growth process of plasma deposited silicon films have revealed that qualitatively similar pathways for thermally activated hydrogen abstraction also occur commonly on the amorphous silicon growth surface.  相似文献   

4.
The reactions of several substituted, positively charged dehydropyridinium cations with cyclohexane, methanol, and tetrahydrofuran have been examined in a Fourier-transform ion cyclotron resonance mass spectrometer. All of the charged monoradicals react with the neutral reagents exclusively via hydrogen atom abstraction. For cyclohexane, there is a good correlation between the reaction efficiencies and the calculated electron affinities at the radical sites; that is, the greater the electron affinity of the charged monoradical at the radical site, the faster the reaction. The reaction efficiencies with methanol and tetrahydrofuran, however, do not correlate with the calculated electron affinities. Density functional theory (DFT) calculations indicate that for these reagents a stabilizing hydrogen bonding interaction exists in the hydrogen atom abstraction transition states for some of the charged monoradicals but not for others. At both the MPW1K and G3MP2B3 levels of theory, there is a good correlation between the calculated activation enthalpies and the observed reaction efficiencies, although the G3MP2B3 method provides a slightly better correlation than the MPW1K method. The extent of enhancement in the reaction efficiencies caused by the hydrogen bonding interactions parallels the calculated hydrogen bond lengths in the transition states.  相似文献   

5.
Gas-phase hydrogen abstraction reactions have been compared using the popular density functional theory(DFT) functional BHandHLYP/aug-cc-pVTZ/RECP level of theory,on the basis of the model reaction CHCl·-/CCl2·-+ CX3H(X = F,Cl,Br and I).Our theoretical findings suggest the efficiency of the H-abstraction reactions induced by either CHCl·-or CCl2·-increases as the substrate is changed from CF3H to CI3H,and that CHCl·-has a higher activity in hydrogen abstraction than CCl2·-for a given substrate.The entropy effect at 298 K does not significantly change the trend in reactivity of the various reactions,which is in general controlled by the heights of activation energies △E≠.Therefore,we have explored the origin of the energy barriers △E≠ of the reactions using the activation strain model of chemical reactivity.  相似文献   

6.
Symmetric and nonsymmetric hydrogen abstraction reactions are studied using state-of-the-art ab initio electronic structure methods. Second-order M?ller-Plesset perturbation theory (MP2) and the coupled-cluster singles, doubles, and perturbative triples [CCSD(T)] methods with large correlation consistent basis sets (cc-pVXZ, where X = D,T,Q) are used in determining the transition-state geometries, activation barriers, and thermodynamic properties of several representative hydrogen abstraction reactions. The importance of basis set, electron correlation, and choice of zeroth-order reference wave function in the accurate prediction of activation barriers and reaction enthalpies are also investigated. The ethynyl radical (*CCH), which has a very high affinity for hydrogen atoms, is studied as a prototype hydrogen abstraction agent. Our high-level quantum mechanical computations indicate that hydrogen abstraction using the ethynyl radical has an activation energy of less than 3 kcal mol(-1) for hydrogens bonded to an sp(2) or sp(3) carbon. These low activation barriers further corroborate previous studies suggesting that ethynyl-type radicals would make good tooltips for abstracting hydrogens from diamondoid surfaces during mechanosynthesis. Modeling the diamond C(111) surface with isobutane and treating the ethynyl radical as a tooltip, hydrogen abstraction in this reaction is predicted to be barrierless.  相似文献   

7.
In order to model the C-H bond activation step in ribonucleotide reductases the hydrogen atom abstraction reaction from cis-tetrahydrofuran-2,3-diol (7) by methylthiyl (8) radical has been studied with theoretical methods. In order to identify an appropriate theoretical method for this system, the hydrogen transfer reaction between radical 8 and methanol (9) to give methanol radical (10) and methyl thiol (11) has been studied at several different levels of theory. While the reaction energy for this process is predicted equally well by the Becke3LYP and BH and HLYP hybrid functional methods, the reaction barrier is predicted to be significantly lower by the former. Compared to results obtained at CCSD(T)/cc-pVTZ level the BH and HLYP functional is better suited for the calculation of activation barriers for hydrogen abstraction reactions. This latter method was subsequently used to study the reaction of radical 8 with cis-tetrahydrofuran-2,3-diol 7 in the absence and in the presence of additional functional groups (acetate and acetamide) as models for the substrate reaction of class I ribonucleotide reductases (RNRs). The reaction barrier is lowest in those systems, in which acetate forms a double hydrogen bonded complex with the hydroxy groups of diol 7 (+8.2 kcal mol-1) and increases somewhat for side-on complexes between substrate 7 and acetate featuring only one hydrogen bond (+10.5 kcal mol-1). The barrier reduction of 6.5 kcal mol-1 obtained through complexation of diol 7 with acetate appears to be due to the formation of short strong hydrogen bonds in the transition. These effects can also be found in reactions of thiyl radical 8 with complexes of diol 7 with acetamide, but to a much smaller extent. The lowest reaction barrier is in this case calculated for the side-on complex (+11.2 kcal mol-1), while the bridging orientation between diol 7 and acetamide leads to a reaction barrier (+13.4) that is only slightly lower than that for the uncatalyzed process (+14.7 kcal mol-1). With respect to the structure of the active site of the RNR R1 subunit, only the side-on complexes appear to be relevant for the enzyme-catalyzed process. Under this condition the influence of the E441 side chan and thus the impact of the E441Q mutation in the initial C-H bond activation step will be rather small.  相似文献   

8.
The conformational potential energy surfaces for mono- and difluoromethyl formate have been determined by using a modified G2(MP2) level of calculations. The structures and vibrational frequencies for the conformers of mono- and difluoromethyl formate have been reported. The hydrogen abstraction reaction channels between these two formates and OH radicals have been studied at the same level of theory. Using the standard transition state theory and taking into account the effect of tunneling across the reaction barrier, we have estimated the rate constant for hydrogen abstraction by OH radical. The effect of successive fluorine substitution for methyl hydrogen on the conformational stability and on the hydrogen abstraction rate has been analyzed.  相似文献   

9.
Thermochemical and kinetic data were calculated at four cost-effective levels of theory for a set consisting of five hydrogen abstraction reactions between hydrocarbons for which experimental data are available. The selection of a reliable, yet cost-effective method to study this type of reactions for a broad range of applications was done on the basis of comparison with experimental data or with results obtained from computationally demanding high level of theory calculations. For this benchmark study two composite methods (CBS-QB3 and G3B3) and two density functional theory (DFT) methods, MPW1PW91/6-311G(2d,d,p) and BMK/6-311G(2d,d,p), were selected. All four methods succeeded well in describing the thermochemical properties of the five studied hydrogen abstraction reactions. High-level Weizmann-1 (W1) calculations indicated that CBS-QB3 succeeds in predicting the most accurate reaction barrier for the hydrogen abstraction of methane by methyl but tends to underestimate the reaction barriers for reactions where spin contamination is observed in the transition state. Experimental rate coefficients were most accurately predicted with CBS-QB3. Therefore, CBS-QB3 was selected to investigate the influence of both the 1D hindered internal rotor treatment about the forming bond (1D-HR) and tunneling on the rate coefficients for a set of 21 hydrogen abstraction reactions. Three zero curvature tunneling (ZCT) methods were evaluated (Wigner, Skodje & Truhlar, Eckart). As the computationally more demanding centrifugal dominant small curvature semiclassical (CD-SCS) tunneling method did not yield significantly better agreement with experiment compared to the ZCT methods, CD-SCS tunneling contributions were only assessed for the hydrogen abstractions by methyl from methane and ethane. The best agreement with experimental rate coefficients was found when Eckart tunneling and 1D-HR corrections were applied. A mean deviation of a factor 6 on the rate coefficients is found for the complete set of 21 reactions at temperatures ranging from 298 to 1000 K. Tunneling corrections play a critical role in obtaining accurate rate coefficients, especially at lower temperatures, whereas the hindered rotor treatment only improves the agreement with experiment in the high-temperature range.  相似文献   

10.
For hydrogen bond systems X–D–HA–Y, a simple molecular orbital model is proposed to understand the mechanism of the bond distance variations caused by the hydrogen bond formation. This model explains the bond distance variations for X–D and A–Y as follows. Electrostatic potential that the electrons in a molecule receive from other molecules causes the changes in atomic orbital energy differences between the bonded atoms. Then, the changes in the orbital energy differences make the bond orders larger or smaller and consequently the bond distances vary. The validity of this model has been confirmed by the effective fragment potential method, using the test systems of (HCOOH)2, HCONH2 (formamide) crystal and BF3·2H2O crystal.  相似文献   

11.
The structural, electronic, and thermodynamic properties of ammonia-borane complexes with varying amounts of hydrogen have been characterized by first principles calculations within density functional theory. The calculated structural parameters and thermodynamic functions (free energy, enthalpy and entropy) were found to be in good agreement with experimental and quantum chemistry data for the crystals, dimers, and molecules. The authors find that zero-point energies change several H2 release reactions from endothermic to exothermic. Both the ammonia-borane polymeric and borazine-cyclotriborazane cycles show a strong exothermic decomposition character (approximately -10 kcal/mol), implying that rehydrogenation may be difficult to moderate H2 pressures. Hydrogen bonding in these systems has been characterized and they find the N-H bond to be more covalent than the more ionic B-H bond.  相似文献   

12.
Pd催化甲醇裂解制氢的反应机理   总被引:1,自引:0,他引:1  
基于密度泛函理论(DFT), 研究了甲醇在Pd(111)面上首先发生O—H键断裂的反应历程(CH3OH(s)→CH3O(s)+H(s)→CH2O(s)+2H(s)→CHO(s)+3H(s)→CO(s)+4H(s)). 优化了裂解过程中各反应物、中间体、过渡态和产物的几何构型, 获得了反应路径上各物种的吸附能及各基元反应的活化能数据. 另外, 对甲醇发生C—O键断裂生成CH3(s)和OH(s)的分解过程也进行了模拟计算. 计算结果表明, O—H键的断裂(活化能为103.1 kJ·mol-1)比C—O键的断裂(活化能为249.3 kJ·mol-1)更容易; 甲醇在Pd(111)面上裂解的主要反应历程是: 甲醇首先发生O—H键的断裂, 生成甲氧基中间体(CH3O(s)), 然后甲氧基中间体再逐步脱氢生成CO(s)和H(s). 甲醇发生O—H键断裂的活化能为103.1 kJ·mol-1, 甲氧基上脱氢的活化能为106.7 kJ·mol-1, 两者均有可能是整个裂解反应的速控步骤.  相似文献   

13.
Density functional theory calculations (B3LYP and BH&HLYP functionals) of the potential energy surface have been performed to investigate the mechanisms of decalin breakdown, and the Rice-Ramsperger-Kassel-Marcus and transition state theory methods have been used to compute the high-pressure limit thermal rate constants for the new reaction pathways. The new pathways connect decalin to five primary monoaromatic species: benzene, toluene, styrene, ethylbenzene, and xylene. The reactions used for the new routes are carbon-carbon bond cleavage reaction, dissociation reaction, and hydrogen abstraction and addition reactions. A kinetic analysis was performed for pyrolytic conditions, and benzene, toluene, and xylene were identified as major products.  相似文献   

14.
15.
16.
17.
The reaction mechanism of 1-chloroethane with hydroxyl radical has been inves- tigated by using density functional theory (DFT) B3LYP/6-31G (d, p) method. All bond dissociation enthalpies were computed at the same theoretical level. It was found that hydrogen abstraction pathway is the most favorable. There are two hydrogen abstraction pathways with activation barriers of 0.630 and 4.988 kJ/mol, respectively, while chlorine abstraction pathway was not found. It was observed that activation energies have a more reasonable correlation with the reaction enthalpy changes (△Hr) than with bond dissociation enthalpies (BDE).  相似文献   

18.
The decomposition of methanol on the Ni(111) surface has been studied with the pseudopotential method of density functional theory-generalized gradient approximation (DFT-GGA) and with the repeated slab models. The adsorption energies of possible species and the activation energy barriers of the possible elementary reactions involved are obtained in the present work. The major reaction path on Ni surfaces involves the O-H bond breaking in CH(3)OH and the further decomposition of the resulting methoxy species to CO and H via stepwise hydrogen abstractions from CH(3)O. The abstraction of hydrogen from methoxy itself is the rate-limiting step. We also confirm that the C-O and C-H bond-breaking paths, which lead to the formation of surface methyl and hydroxyl and hydroxymethyl and atom hydrogen, respectively, have higher energy barriers. Therefore, the final products are the adsorbed CO and H atom.  相似文献   

19.
The challenging requirements of high safety, low-cost, all-climate and long lifespan restrict most battery technologies for grid-scale energy storage. Historically, owing to stable electrode reactions and robust battery chemistry, aqueous nickel–hydrogen gas (Ni–H2) batteries with outstanding durability and safety have been served in aerospace and satellite systems for over three decades ever since their first development in the 1970s. Despite their satisfactory performances, this technology has difficulty to be applied for grid-scale energy storage primarily because of their high cost resulting from the utilization of expensive platinum as anode hydrogen catalyst. In recent years, with the extensive exploration of inexpensive hydrogen evolution/oxidation reaction catalysts, advanced Ni–H2 batteries have been revived as promising battery chemistry for grid-scale energy storage applications. This mini-review provides an overview of the development activities of Ni–H2 batteries and highlights the recent advances in the application of advanced Ni–H2 batteries for grid-scale energy storage. New cost-effective hydrogen evolution/oxidation reactions catalysts, novel cathode materials, and advanced Ni–H2 battery designs toward further development of Ni–H2 batteries are discussed. The renaissance of advanced Ni–H2 battery technology is particularly attractive for future grid-scale energy storage applications.  相似文献   

20.
Hydrosilylation provides a route to form substituted silanes in solution. A similar reaction has been observed in the formation of covalent organic monolayers on a hydrogen-terminated silicon surface and is called thermal hydrosilylation. In solution, the mechanism requires a catalyst to add the basal silicon and saturating hydrogen to the C=C double bond. On the silicon surface, however, the reaction proceeds efficiently at 200 °C, initiated by visible light, and more slowly at room temperature in the dark. Such low activation energy barriers for the reactions on a surface relative to that required for solution hydrosilylation are remarkable, and although many explanations have been suggested, controversy still exists. In this work using a constrained molecular dynamics approach within the density functional theory framework, we show that the free energy activation barrier for abstraction of a hydrogen from silicon by an alkene molecule can be overcome by visible light or thermal excitation. Furthermore, we show that by concerted transfer of a hydrogen from the α-carbon to the β-carbon, a 1-alkene can insert its α-carbon into a surface Si-H bond to accomplish hydrosilylation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号