首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper the problem of fully developed laminar steady forced convection inside a porous‐saturated pipe with uniform wall temperature is presented and the homotopy perturbation method (HPM) and the variational iteration method (VIM) are employed to solve the differential equations governing the problem. The obtained results are valid for the whole solution domain with high accuracy. These methods can be easily extended to other linear and nonlinear equations and so can be found widely applicable in engineering and science. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

2.
In this work, the homotopy perturbation method (HPM), the variational iteration method (VIM) and the Adomian decomposition method (ADM) are applied to solve the Fitzhugh–Nagumo equation. Numerical solutions obtained by these methods when compared with the exact solutions reveal that the obtained solutions produce high accurate results. The results show that the HPM, the VIM and the ADM are of high accuracy and are efficient for solving the Fitzhugh–Nagumo equation. Also the results demonstrate that the introduced methods are powerful tools for solving the nonlinear partial differential equations. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

3.
The work presents an adaptation of iteration method for solving a class of thirst order partial nonlinear differential equation with mixed derivatives.The class of partial differential equations present here is not solvable with neither the method of Green function, the most usual iteration methods for instance variational iteration method, homotopy perturbation method and Adomian decomposition method, nor integral transform for instance Laplace,Sumudu, Fourier and Mellin transform. We presented the stability and convergence of the used method for solving this class of nonlinear chaotic equations.Using the proposed method, we obtained exact solutions to this kind of equations.  相似文献   

4.
As thermal conductivity plays an important role on fin efficiency, we tried to solve heat transfer equation with thermal conductivity as a function of temperature. In this research, some new analytical methods called homotopy perturbation method, variational iteration method, and Adomian decomposition method are introduced to be applied to solve the nonlinear heat transfer equations, and also the comparison of the applied methods (together) is shown graphically. © 2009 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 2010  相似文献   

5.
Many physical and scientific phenomena are modeled by nonlinear partial differential equations (NPDEs); it is difficult to handle nonlinear part of these equations. Recently some analytical methods are applied to solve such equations. In this work, modified Camassa–Holm and Degasperis–Procesi equation is studied. Adomian’s decomposition method (ADM) is applied to obtain solution of this equation. The results are compared to those of homotopy perturbation method (HPM) and exact solution. The study highlights the significant features of the employed method and its ability to handle nonlinear partial differential equations.  相似文献   

6.
The variational iteration method and the homotopy analysis method, as alternative methods, have been widely used to handle linear and nonlinear models. The main property of the methods is their flexibility and ability to solve nonlinear equations accurately and conveniently. This paper deals with the numerical solutions of nonlinear fractional differential equations, where the fractional derivatives are considered in Caputo sense. The main aim is to introduce efficient algorithms of variational iteration and homotopy analysis methods that can be simply used to deal with nonlinear fractional differential equations. In these algorithms, Legendre polynomials are effectively implemented to achieve better approximation for the nonhomogeneous and nonlinear terms that leads to facilitate the computational work. The proposed algorithms are capable of reducing the size of calculations, improving the accuracy and easily overcome the difficulty arising in calculating complicated integrals. Numerical examples are examined to show the efficiency of the algorithms.  相似文献   

7.
A new analytical method called He’s variational iteration method (VIM) is introduced to be applied to solve nonlinear Benjamin-Bona-Mahony-Burgers (BBMB) equations and free vibration of a nonlinear system having combined linear and nonlinear springs in series in this article. In this method, general Lagrange multipliers are introduced to construct correction functionals for the problems. The multipliers can be identified optimally via the variational theory. The results are compared with the results of the homotopy analysis method and also with the exact solution. He’s Variational iteration method in this problem functions so better than the homotopy analysis method and exact solutions one of them in per section.  相似文献   

8.
In this paper, the homotopy analysis method (HAM) proposed by Liao in 1992 and the homotopy perturbation method (HPM) proposed by He in 1998 are compared through an evolution equation used as the second example in a recent paper by Ganji et al. [D.D. Ganji, H. Tari, M.B. Jooybari, Variational iteration method and homotopy perturbation method for nonlinear evolution equations. Comput. Math. Appl. 54 (2007) 1018–1027]. It is found that the HPM is a special case of the HAM when =-1. However, the HPM solution is divergent for all x and t except t=0. It is also found that the solution given by the variational iteration method (VIM) is divergent too. On the other hand, using the HAM, one obtains convergent series solutions which agree well with the exact solution. This example illustrates that it is very important to investigate the convergence of approximation series. Otherwise, one might get useless results.  相似文献   

9.
We discuss some recent inadequate applications of the homotopy perturbation method, the Adomian decomposition method and the variational iteration method to nonlinear problems.  相似文献   

10.
In this work, a partial differential equation, which has several important applications, is investigated, and some techniques based on semianalytic (or quasi‐numerical) approaches are developed to find its solution. In this article, the homotopy perturbation method (HPM), Adomian decomposition method, and the modified homotopy perturbation method are proposed to solve the Eikonal equation. HPM yields solution in convergent series form with easily computable terms, and in some case, yields exact solutions in one iteration. In other hand, in Adomian decomposition method, the approximate solution is considered as an infinite series usually converges to the accurate solution. Moreover, these methods do not require any discretization, linearization, or small perturbation, and therefore reduce the numerical computation a lot. Several test problems are given and results are compared with the variational iteration method. © 2009 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2010  相似文献   

11.
In the paper, we implement relatively new analytical techniques, the variational iteration method, the Adomian decomposition method and the homotopy perturbation method, for obtaining a rational approximation solution of the fractional Sharma–Tasso–Olever equation. The three methods in applied mathematics can be used as alternative methods for obtaining an analytic and approximate solution for different types of differential equations. In these schemes, the solution takes the form of a convergent series with easily computable components. The numerical results demonstrate the significant features, efficiency and reliability of the three approaches.  相似文献   

12.
In this paper, a numerical method for fourth-order time-fractional partial differential equations with variable coefficients is proposed. Our method consists of Laplace transform, the homotopy perturbation method and Stehfest's numerical inversion algorithm. We show the validity and efficiency of the proposed method (so called LHPM) by applying it to some examples and comparing the results obtained by this method with the ones found by Adomian decomposition method (ADM) and He's variational iteration method (HVIM).  相似文献   

13.
In this paper, we present the variational iteration method and homotopy perturbation method to solve the modified Kawahara equations. Both methods provide remarkable accuracy for the approximate solutions when compared to the exact solutions. Numerical results demonstrate that the methods provide efficient approaches to solving the modified Kawahara equation.  相似文献   

14.
Purpose In this article, a novel computational method is introduced for solving the fractional nonlinear oscillator differential equations on the semi‐infinite domain. The purpose of the proposed method is to get better and more accurate results. Design/methodology/approach The proposed method is the combination of the sine‐cosine wavelets and Picard technique. The operational matrices of fractional‐order integration for sine‐cosine wavelets are derived and constructed. Picard technique is used to convert the fractional nonlinear oscillator equations into a sequence of discrete fractional linear differential equations. Operational matrices of sine‐cosine wavelets are utilized to transformed the obtained sequence of discrete equations into the systems of algebraic equations and the solutions of algebraic systems lead to the solution of fractional nonlinear oscillator equations. Findings The convergence and supporting analysis of the method are investigated. The operational matrices contains many zero entries, which lead to the high efficiency of the method, and reasonable accuracy is achieved even with less number of collocation points. Our results are in good agreement with exact solutions and more accurate as compared with homotopy perturbation method, variational iteration method, and Adomian decomposition method. Originality/value Many engineers can utilize the presented method for solving their nonlinear fractional models.  相似文献   

15.
In this paper we investigate and compare the variational iteration method and the successive approximations method for solving a class of nonlinear differential equations. We prove that these two methods are equivalent for solving these types of equations.  相似文献   

16.
In this article, the problem of Burgers equation is presented and the homotopy perturbation method (HPM) is employed to compute an approximation to the solution of the system of nonlinear differential equations governing on the problem. Comparison is made between the HPM and Exact solutions. The obtained solutions, in comparison with the exact solutions, admit a remarkable accuracy. A clear conclusion can be drawn from the numerical results that the HPM provides highly accurate numerical solutions for nonlinear differential equations. © 2009 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 2010  相似文献   

17.
In this paper, we apply the new homotopy perturbation method to solve the Volterra's model for population growth of a species in a closed system. This technique is extended to give solution for nonlinear integro‐differential equation in which the integral term represents the total metabolism accumulated fromtime zero. The approximate analytical procedure only depends on two components. The newhomotopy perturbationmethodwas applied to nonlinear integro‐differential equations directly and by converting the problem into nonlinear ordinary differential equation. We also compare this method with some other numerical results and show that the present approach is less computational and is applicable for solving nonlinear integro‐differential equations and ordinary differential equations as well. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

18.
This paper deals with the study of parametric oscillation of an electrostatically actuated microbeam using variational iteration method. The paper considers a micro-beam suspended between two conductive micro-plates, subjected to a same actuation voltage. The nonlinear governing differential equation of motion about static equilibrium position using calculus of variation theory and Taylor series expansion has been linearized and implementing a Galerkin based reduced order model a Mathieu type equation has been obtained. By improving variational iteration method combining with method of strained parameters transition curves, separating stable from unstable regions have been obtained. The results of variational iteration method, perturbation and direct numerical integration methods for some cases selected from different regions (stable and unstable regions) have been compared.  相似文献   

19.
In this work, we implement a relatively analytical technique, the homotopy perturbation method (HPM), for solving nonlinear partial differential equations of fractional order. The fractional derivatives are described in Caputo derivatives. This method can be used as an alternative to obtain analytic and approximate solutions of different types of fractional differential equations which applied in engineering mathematics. The corresponding solutions of the integer order equations are found to follow as special cases of those of fractional order equations. He’s homotopy perturbation method (HPM) which does not need small parameter is implemented for solving the differential equations. It is predicted that HPM can be found widely applicable in engineering.  相似文献   

20.
This paper applies the variational iteration method (VIM) and semi-inverse variational principle to obtain solutions of linear and nonlinear partial differential equations. The nonlinear model is considered from gas dynamics, fluid dynamics and Burgers equation. The linear model is the heat transfer (diffusion) equation. Results show that variational iteration method is a powerful mathematical tool for solving linear and nonlinear partial differential equations, and therefore, can be widely applied to engineering problems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号