首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
In this work, we present the method based on radial basis functions to solve partial integro-differential equations. We focus on the parabolic type of integro-differential equations as the most common forms including the ``\emph{memory}'' of the systems. We propose to apply the collocation scheme using radial basis functions to approximate the solutions of partial integro-differential equations. Due to the presented technique, system of linear or nonlinear equations is made instead of primary problem. The method is efficient because the rate of convergence of collocation method based on radial basis functions is exponential. Some numerical examples and investigation of the experimental results show the applicability and accuracy of the method.  相似文献   

2.
A new conjugate gradient method is proposed by applying Powell’s symmetrical technique to conjugate gradient methods in this paper. Using Wolfe line searches, the global convergence of the method is analyzed by using the spectral analysis of the conjugate gradient iteration matrix and Zoutendijk’s condition. Based on this, some concrete descent algorithms are developed. 200s numerical experiments are presented to verify their performance and the numerical results show that these algorithms are competitive compared with the PRP+ algorithm. Finally, a brief discussion of the new proposed method is given.  相似文献   

3.
In the present work, we first modify the Sprott's nonlinear love triangle model by introducing the competition term and find that the new system also exhibits chaotic behavior. Then, to make the model more realistic, we go further to construct its corresponding fractional-order system and get the necessary condition for the existence of chaotic attractors. Finally, based on an improved version of Adams Bashforth Moulton numerical algorithm, we validate the chaotic attractors of this new fractional-order love triangle system by computer simulations.  相似文献   

4.
Solving systems of nonlinear equations is perhaps one of the most difficult problems in all numerical computation. Although numerous methods have been developed to attack this class of numerical problems, one of the simplest and oldest methods, Newton’s method is arguably the most commonly used. As is well known, the convergence and performance characteristics of Newton’s method can be highly sensitive to the initial guess of the solution supplied to the method. In this paper a hybrid scheme is proposed, in which the Electromagnetic Meta-Heuristic method (EM) is used to supply a good initial guess of the solution to the finite difference version of the Newton-GMRES method (NG) for solving a system of nonlinear equations. Numerical examples are given in order to compare the performance of the hybrid of the EM and NG methods. Empirical results show that the proposed method is an efficient approach for solving systems of nonlinear equations.  相似文献   

5.
Dorodnicyn’s classical work concerning the method of integral relations is given in his original presentation. Developments of the method provided by Dorodnicyn’s students are outlined. Belotserkovskii’s 1956 paper concerning a technique for computing the detached shock wave in flow over a cylinder is presented in full (with comments and numerical results). A technique for the study of flow characteristics for space vehicles of particular shapes is described. The breakthrough character of techniques proposed more than 50 years ago is demonstrated, and their (still important) philosophy is assessed.  相似文献   

6.
An epidemic model with relapse and spatial diffusion is studied. Such a model is appropriate for tuberculosis, including bovine tuberculosis in cattle and wildlife, and for herpes. By using the linearized method, the local stability of each of feasible steady states to this model is investigated. It is proven that if the basic reproduction number is less than unity, the disease-free steady state is locally asymptotically stable; and if the basic reproduction number is greater than unity, the endemic steady state is locally asymptotically stable. By the cross-iteration scheme companied with a pair of upper and lower solutions and Schauder's fixed point theorem, the existence of a traveling wave solution which connects the two steady states is established. Furthermore, numerical simulations are carried out to complement the main results.  相似文献   

7.
Since Song and Chissom (Fuzzy Set Syst 54:1–9, 1993a) first proposed the structure of fuzzy time series forecast, researchers have devoted themselves to related studies. Among these studies, Hwang et al. (Fuzzy Set Syst 100:217–228, 1998) revised Song and Chissom’s method, and generated better forecasted results. In their method, however, several factors that affect the accuracy of forecast are not taken into consideration, such as levels of window base, length of interval, degrees of membership values, and the existence of outliers. Focusing on these factors, this study proposes an improved fuzzy time series forecasting method. The improved method can provide decision-makers with more precise forecasted values. Two numerical examples are employed to illustrate the proposed method, as well as to compare the forecasting accuracy of the proposed method with that of two fuzzy forecasting methods. The results of the comparison indicate that the proposed method produces more accurate forecasting results.  相似文献   

8.
The numerical solution of nonlinear equation systems is often achieved by so-called quasi-Newton methods. They preserve the rapid local convergence of Newton’s method at a significantly reduced cost per step by successively approximating the system Jacobian though low-rank updates. We analyze two variants of the recently proposed adjoint Broyden update, which for the first time combines the classical least change property with heredity on affine systems. However, the new update does require, the evaluation of so-called adjoint vectors, namely products of the transposed Jacobian with certain dual direction vectors. The resulting quasi-Newton method is linear contravariant in the sense of Deuflhard (Newton methods for nonlinear equations. Springer, Heidelberg, 2006) and it is shown here to be locally and q-superlinearly convergent. Our numerical results on a range of test problems demonstrate that the new method usually outperforms Newton’s and Broyden’s method in terms of runtime and iterations count, respectively. Partially supported by the DFG Research Center Matheon “Mathematics for Key Technologies”, Berlin and the DFG grant WA 1607/2-1.  相似文献   

9.
In this paper, we study the a posteriori error estimator of SDG method for variable coefficients time-harmonic Maxwell's equations. We propose two a posteriori error estimators, one is the recovery-type estimator, and the other is the residual-type estimator. We first propose the curl-recovery method for the staggered discontinuous Galerkin method (SDGM), and based on the super-convergence result of the postprocessed solution, an asymptotically exact error estimator is constructed. The residual-type a posteriori error estimator is also proposed, and it's reliability and effectiveness are proved for variable coefficients time-harmonic Maxwell's equations. The efficiency and robustness of the proposed estimators is demonstrated by the numerical experiments.  相似文献   

10.
We recover the first linear programming bound of McEliece, Rodemich, Rumsey, and Welch for binary error-correcting codes and designs via a covering argument. It is possible to show, interpreting the following notions appropriately, that if a code has a large distance, then its dual has a small covering radius and, therefore, is large. This implies the original code to be small. We also point out that this bound is a natural isoperimetric constant of the Hamming cube, related to its Faber–Krahn minima. While our approach belongs to the general framework of Delsarte’s linear programming method, its main technical ingredient is Fourier duality for the Hamming cube. In particular, we do not deal directly with Delsarte’s linear program or orthogonal polynomial theory. This research was partially supported by ISF grant 039-7682.  相似文献   

11.
A finite volume method is presented to discretize the Patlak–Keller–Segel (PKS) modeling chemosensitive movements. First, we prove existence and uniqueness of a numerical solution to the proposed scheme. Then, we give a priori estimates and establish a threshold on the initial mass, for which we show that the numerical approximation converges to the solution to the PKS system when the initial mass is lower than this threshold. Numerical simulations are performed to verify accuracy and the properties of the scheme. Finally, in the last section we investigate blow-up of the solution for large mass.  相似文献   

12.
Several methods have been proposed to calculate a rigorous error bound of an approximate solution of a linear system by floating-point arithmetic. These methods are called ‘verification methods’. Applicable range of these methods are different. It depends mainly on the condition number and the dimension of the coefficient matrix whether such methods succeed to work or not. In general, however, the condition number is not known in advance. If the dimension or the condition number is large to some extent, then Oishi–Rump’s method, which is known as the fastest verification method for this purpose, may fail. There are more robust verification methods whose computational cost is larger than the Oishi–Rump’s one. It is not so efficient to apply such robust methods to well-conditioned problems. The aim of this paper is to choose a suitable verification method whose computational cost is minimum to succeed. First in this paper, four fast verification methods for linear systems are briefly reviewed. Next, a compromise method between Oishi–Rump’s and Ogita–Oishi’s one is developed. Then, an algorithm which automatically and efficiently chooses an appropriate verification method from five verification methods is proposed. The proposed algorithm does as much work as necessary to calculate error bounds of approximate solutions of linear systems. Finally, numerical results are presented.  相似文献   

13.
In this paper we present some results of global existence and attrac-tivity of mild solutions for semilinear evolution equations with innitedelay in a Banach space. The considerations of this paper are basedon the Schauder's xed point theorem and the theory of evolutionsystem.  相似文献   

14.
In this paper, we study the traveling wave solutions of the Kaup-Kupershmidt (KK) equation through using the dynamical system approach, which is an integrable fifth-order wave equation. Based on Cosgrove's work [3] and the phase analysis method of dynamical systems, infinitely many soliton solutions are presented in an explicit form. To guarantee the existence of soliton solutions, we discuss the parameters range as well as geometrical explanation of soliton solutions.  相似文献   

15.
The paper is concerned with new approaches to the analysis of spectra of linear operators. New algorithms are proposed to calculate the coefficients of the minimal polynomial of a matrix; they are based on the well-known Krylov’s method, SSA decomposition, and the “Caterpillar” method of recurrent translation. The extension obtained is capable of dealing with matrices of infinite order; this has great value in solving queuing problems. Results from numerical experiments for matrices of various orders are given.  相似文献   

16.
17.
In this paper a spectral method and a numerical continuation algorithm for solving eigenvalue problems for the rectangular von Kármán plate with different boundary conditions (simply supported, partially or totally clamped) and physical parameters are introduced. The solution of these problems has a postbuckling behaviour. The spectral method is based on a variational principle (Galerkin’s approach) with a choice of global basis functions which are combinations of trigonometric functions. Convergence results of this method are proved and the rate of convergence is estimated. The discretized nonlinear model is treated by Newton’s iterative scheme and numerical continuation. Branches of eigenfunctions found by the algorithm are traced. Numerical results of solving the problems for polygonal and ferroconcrete plates are presented. Communicated by A. Zhou.  相似文献   

18.
The aim of this article is further extending the linear programming techniques for multidimensional analysis of preference (LINMAP) to develop a new methodology for solving multiattribute decision making (MADM) problems under Atanassov’s intuitionistic fuzzy (IF) environments. The LINMAP only can deal with MADM problems in crisp environments. However, fuzziness is inherent in decision data and decision making processes. In this methodology, Atanassov’s IF sets are used to describe fuzziness in decision information and decision making processes by means of an Atanassov’s IF decision matrix. A Euclidean distance is proposed to measure the difference between Atanassov’s IF sets. Consistency and inconsistency indices are defined on the basis of preferences between alternatives given by the decision maker. Each alternative is assessed on the basis of its distance to an Atanassov’s IF positive ideal solution (IFPIS) which is unknown a prior. The Atanassov’s IFPIS and the weights of attributes are then estimated using a new linear programming model based upon the consistency and inconsistency indices defined. Finally, the distance of each alternative to the Atanassov’s IFPIS can be calculated to determine the ranking order of all alternatives. A numerical example is examined to demonstrate the implementation process of this methodology. Also it has been proved that the methodology proposed in this article can deal with MADM problems under not only Atanassov’s IF environments but also both fuzzy and crisp environments.  相似文献   

19.
A spectral method is developed to numerically solve the so-calledKuramoto–Sakaguchi equation, which is a nonlinear integro-differentialequation of the parabolic type, governing the dynamical statisticalbehaviour of certain populations of nonlinearly coupled randomoscillators. The approach rests on explicit bounds for the spacederivatives of solutions, obtained via energy-like estimates.Bounds for the numerical approximations of solutions are given,and improved (sometimes appreciably) by means of an ‘aposteriori error analysis’. Plots are shown to illustratethe performance of the method, and comparison with a finitedifference approach is also made.  相似文献   

20.
In this article, we discuss a particular imbalance cash-out problem arising in the natural gas supply chain. This problem was created by the liberalization laws that regulate deals between a natural gas shipping company and a pipeline operator. The problem was first modeled as a bilevel nonlinear mixed-integer problem that considers the cash-out penalization for the final imbalance occurring in the system. We extend the original problem’s upper level objective function by including additional terms accounting for the gas shipping company’s daily actions aimed at taking advantage of the price variations. Then we linearize all the constraints at both levels in an equivalent way so as to make easier their numerical solution. The results of numerical experiments are compared with those obtained by the inexact penalization method proposed by the authors in previous papers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号