首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
In this paper we consider a simplified two-dimensional scalar model for the formation of mesoscopic domain patterns in martensitic shape-memory alloys at the interface between a region occupied by the parent (austenite) phase and a region occupied by the product (martensite) phase, which can occur in two variants (twins). The model, first proposed by Kohn and Müller (Philos Mag A 66(5):697–715, 1992), is defined by the following functional:
(E)(u) = 2pb||u(0,·)||2[(H)\dot]1/2([0,h]) + ò0L dx ò0h dy ( |ux|2 + \frace2|uyy| ),\mathcal (E)(u) = 2\pi\beta||u(0,\cdot)||^2_{\dot H^{1/2}([0,h])} + \int_{0}^{L} dx \int_0^h dy\, \big( |u_x|^2 + \frac{\varepsilon}2|u_{yy}| \big),  相似文献   

2.
This paper considers Hardy–Lieb–Thirring inequalities for higher order differential operators. A result for general fourth-order operators on the half-line is developed, and the trace inequality
tr( (-D)2 - CHRd,2\frac1|x|4 - V(x) )-gCgò\mathbbRd V(x)+g+ \fracd4 dx,     g 3 1 - \frac d 4,\mathrm{tr}\left( (-\Delta)^2 - C^{\mathrm{HR}}_{d,2}\frac{1}{|x|^4} - V(x) \right)_-^{\gamma}\leq C_\gamma\int\limits_{\mathbb{R}^d} V(x)_+^{\gamma + \frac{d}{4}}\,\mathrm{d}x, \quad \gamma \geq 1 - \frac d 4,  相似文献   

3.
The temperature dependences of magnetic entropy change and refrigerant capacity have been calculated for a maximum field change of Δ H=30 kOe in as-quenched ribbons of the ferromagnetic shape memory alloy Ni50.4Mn34.9In14.7 around the structural reverse martensitic transformation and magnetic transition of austenite. The ribbons crystallize into a single-phase austenite with the L21-type crystal structure and Curie point of 284 K. At 262 K austenite starts its transformation into a 10-layered structurally modulated monoclinic martensite. The first- and second-order character of the structural and magnetic transitions was confirmed by the Arrott plot method. Despite the superior absolute value of the maximum magnetic entropy change obtained in the temperature interval where the reverse martensitic transformation occurs (|\varDelta SMmax|=7.2 J kg-1 K-1)(|\varDelta S_{\mathrm{M}}^{\max}|=7.2\mbox{ J}\,\mbox{kg}^{-1}\,\mbox{K}^{-1}) with respect to that obtained around the ferromagnetic transition of austenite (|\varDelta SMmax|=2.6 J kg-1 K-1)(|\varDelta S_{\mathrm{M}}^{\max}|=2.6\mbox{ J}\,\mbox{kg}^{-1}\,\mbox{K}^{-1}), the large average hysteretic losses due to the effect of the magnetic field on the phase transformation as well as the narrow thermal dependence of the magnetic entropy change make the temperature interval around the ferromagnetic transition of austenite of a higher effective refrigerant capacity (RCmagneff=95J kg-1\mathrm{RC}^{\mathrm{magn}}_{\mathrm{eff}}=95\mbox{J}\,\mbox{kg}^{-1} versus RCstructeff=60J kg-1)\mathrm{RC}^{\mathrm{struct}}_{\mathrm{eff}}=60\mbox{J}\,\mbox{kg}^{-1}).  相似文献   

4.
If X = X(t, ξ) is the solution to the stochastic porous media equation in O ì Rd, 1 £ d £ 3,{\mathcal{O}\subset \mathbf{R}^d, 1\le d\le 3,} modelling the self-organized criticality (Barbu et al. in Commun Math Phys 285:901–923, 2009) and X c is the critical state, then it is proved that ò0m(O\Ot0)dt < ¥,\mathbbP-a.s.{\int^{\infty}_0m(\mathcal{O}{\setminus}\mathcal{O}^t_0)dt<{\infty},\mathbb{P}\hbox{-a.s.}} and limt?¥ òO|X(t)-Xc|dx = l < ¥, \mathbbP-a.s.{\lim_{t\to{\infty}} \int_\mathcal{O}|X(t)-X_c|d\xi=\ell<{\infty},\ \mathbb{P}\hbox{-a.s.}} Here, m is the Lebesgue measure and Otc{\mathcal{O}^t_c} is the critical region {x ? O; X(t,x)=Xc(x)}{\{\xi\in\mathcal{O}; X(t,\xi)=X_c(\xi)\}} and X c (ξ) ≤ X(0, ξ) a.e. x ? O{\xi\in\mathcal{O}}. If the stochastic Gaussian perturbation has only finitely many modes (but is still function-valued), limt ? ¥ òK|X(t)-Xc|dx = 0{\lim_{t \to {\infty}} \int_K|X(t)-X_c|d\xi=0} exponentially fast for all compact K ì O{K\subset\mathcal{O}} with probability one, if the noise is sufficiently strong. We also recover that in the deterministic case  = 0.  相似文献   

5.
We consider a Gaussian diffusion X t (Ornstein-Uhlenbeck process) with drift coefficient γ and diffusion coefficient σ 2, and an approximating process YetY^{\varepsilon}_{t} converging to X t in L 2 as ε→0. We study estimators [^(g)]e\hat{\gamma}_{\varepsilon}, [^(s)]2e\hat{\sigma}^{2}_{\varepsilon} which are asymptotically equivalent to the Maximum likelihood estimators of γ and σ 2, respectively. We assume that the estimators are based on the available N=N(ε) observations extracted by sub-sampling only from the approximating process YetY^{\varepsilon}_{t} with time step Δ=Δ(ε). We characterize all such adaptive sub-sampling schemes for which [^(g)]e\hat{\gamma}_{\varepsilon}, [^(s)]2e\hat{\sigma}^{2}_{\varepsilon} are consistent and asymptotically efficient estimators of γ and σ 2 as ε→0. The favorable adaptive sub-sampling schemes are identified by the conditions ε→0, Δ→0, (Δ/ε)→∞, and NΔ→∞, which implies that we sample from the process YetY^{\varepsilon}_{t} with a vanishing but coarse time step Δ(ε)≫ε. This study highlights the necessity to sub-sample at adequate rates when the observations are not generated by the underlying stochastic model whose parameters are being estimated. The adequate sub-sampling rates we identify seem to retain their validity in much wider contexts such as the additive triad application we briefly outline.  相似文献   

6.
We obtain convergent multi-scale expansions for the one-and two-point correlation functions of the low temperature lattice classical N - vector spin model in d S 3 dimensions, N S 2. The Gibbs factor is taken as exp[-b(1/2 ||?f||2 +l/8 || |f|2 - 1 ||2 + v/2||f- h||2)], \exp [-\beta (1/2 ||\partial \phi||^2 +\lambda/8 ||\, |\phi|^2 - 1 ||^2 + v/2||\phi - h||^2)], where f(x), h ? RN\phi(x), h \in R^N, x ? Zdx \in Z^d, |h|=1, b < ¥|h|=1, \beta < \infty, l 3 ¥\lambda \geq \infty are large and 0 < v h 1. In the thermodynamic and v ˉ 0v \downarrow 0 limits, with h = e1, and j L ‘½ ‘, the expansion gives áf1(x)? = 1+0(1/b1/2)\langle \phi_1(x)\rangle = 1+0(1/\beta^{1/2}) (spontaneous magnetization), áf1(x)fi(y)? = 0\langle \phi_1(x)\phi_i(y)\rangle=0, áfi (x)fi (y)? = c0 D-1(x,y)+R(x,y)\langle \phi_i (x)\phi_i (y)\rangle = c_0 \Delta^{-1}(x,y)+R(x,y) (Goldstone Bosons), i = 2, 3, ?, Ni= 2, 3,\,\ldots, N, and áf1(x)f1(y)?T=R¢(x,y)\langle \phi_1(x)\phi_1(y)\rangle^T=R'(x,y), where |R(x,y)||R(x,y)|, |R¢(x,y)| < 0(1)(1+|x-y|)d-2+r|R'(x,y)|< 0(1)(1+|x-y|)^{d-2+\rho} for some „ > 0, and c0 is aprecisely determined constant.  相似文献   

7.
Measurements of α s, the coupling strength of the Strong Interaction between quarks and gluons, are summarised and an updated value of the world average of as(MZ0)\alpha_{\mathrm{s}}(M_{\mathrm{Z}^{0}}) is derived. Special emphasis is laid on the most recent determinations of α s. These are obtained from τ-decays, from global fits of electroweak precision data and from measurements of the proton structure function F2, which are based on perturbative QCD calculations up to O(as4)\mathcal{O}(\alpha_{\mathrm{s}}^{4}); from hadronic event shapes and jet production in e+e annihilation, based on O(as3)\mathcal{O}(\alpha_{\mathrm{s}}^{3}) QCD; from jet production in deep inelastic scattering and from ϒ decays, based on O(as2)\mathcal{O}(\alpha_{\mathrm{s}}^{2}) QCD; and from heavy quarkonia based on unquenched QCD lattice calculations. A pragmatic method is chosen to obtain the world average and an estimate of its overall uncertainty, resulting in
as(MZ0)=0.1184±0.0007.\alpha_\mathrm{s}(M_{\mathrm{Z}^0})=0.1184\pm 0.0007.  相似文献   

8.
Infrared asymptotic behavior of a scalar field, passively advected by a random shear flow, is studied by means of the field theoretic renormalization group and the operator product expansion. The advecting velocity is Gaussian, white in time, with correlation function of the form μ d(t-t¢) / k^d-1+x\propto\delta(t-t') / k_{\bot}^{d-1+\xi}, where k =|k | and k is the component of the wave vector, perpendicular to the distinguished direction (‘direction of the flow’)—the d-dimensional generalization of the ensemble introduced by Avellaneda and Majda (Commun. Math. Phys. 131:381, 1990). The structure functions of the scalar field in the infrared range exhibit scaling behavior with exactly known critical dimensions. It is strongly anisotropic in the sense that the dimensions related to the directions parallel and perpendicular to the flow are essentially different. In contrast to the isotropic Kraichnan’s rapid-change model, the structure functions show no anomalous (multi)scaling and have finite limits when the integral turbulence scale tends to infinity. On the contrary, the dependence of the internal scale (or diffusivity coefficient) persists in the infrared range. Generalization to the velocity field with a finite correlation time is also obtained. Depending on the relation between the exponents in the energy spectrum E μ k^1-e\mathcal{E} \propto k_{\bot}^{1-\varepsilon} and in the dispersion law w μ k^2-h\omega\propto k_{\bot}^{2-\eta}, the infrared behavior of the model is given by the limits of vanishing or infinite correlation time, with the crossover at the ray η=0, ε>0 in the εη plane. The physical (Kolmogorov) point ε=8/3, η=4/3 lies inside the domain of stability of the rapid-change regime; there is no crossover line going through this point.  相似文献   

9.
A high-resolution spectrometer based on a vertical-cavity surface-emitting laser (VCSEL) was developed and used to determine the line strength S(T 0)=12.53(11)×10−21 cm−1/(molec cm−2) and the self-broadening coefficient g0HCl=0.021787(61)\gamma^{0}_{\mathrm{HCl}}=0.021787(61)  cm−1/atm of the R(3) absorption line in the first rovibrational overtone (2←0) band of H35Cl. Furthermore, the first laser-based high-pressure study on the pressure broadening of HCl by He, N2 and O2(g0N2=0.07292(5)\mathrm{O}_{2}(\gamma^{0}_{\mathrm{N}_{2}}=0.07292(5)  cm−1/atm, g0He=0.02113(1)\gamma^{0}_{\mathrm{He}}=0.02113(1)  cm−1/atm, g0O2=0.03978(6)\gamma^{0}_{\mathrm{O}_{2}}=0.03978(6)  cm−1/atm) is presented covering pressures of up to 1 MPa. The results are compared to previously available low-pressure data.  相似文献   

10.
We construct the time evolution for infinitely many particles in F(x) = { *20c + ¥ 0 *20c |x| < a |x| \geqq a \Phi (x) = \left\{ {\begin{array}{*{20}c} { + \infty } \\ 0 \\ \end{array} } \right. \begin{array}{*{20}c} {|x|< a} \\ {|x| \geqq a} \\ \end{array}  相似文献   

11.
In this article, we study the Λ c and Λ b baryons in the nuclear matter using the QCD sum rules, and obtain the in-medium masses M\varLambda c*=2.335 GeVM_{\varLambda _{c}}^{*}=2.335~\mathrm{GeV}, M\varLambda b*=5.678 GeVM_{\varLambda _{b}}^{*}=5.678~\mathrm{GeV}, the in-medium vector self-energies \varSigma \varLambda cv=34 MeV\varSigma ^{\varLambda _{c}}_{v}=34~\mathrm{MeV}, \varSigma \varLambda bv=32 MeV\varSigma ^{\varLambda _{b}}_{v}=32~\mathrm {MeV}, and the in-medium pole residues l\varLambda c*=0.021 GeV3\lambda_{\varLambda _{c}}^{*}=0.021~\mathrm{GeV}^{3}, l\varLambda b*=0.026 GeV3\lambda_{\varLambda _{b}}^{*}=0.026~\mathrm{GeV}^{3}. The mass-shifts are M\varLambda c*-M\varLambda c=51 MeVM_{\varLambda _{c}}^{*}-M_{\varLambda _{c}}=51~\mathrm{MeV} and M\varLambda b*-M\varLambda b=60 MeVM_{\varLambda _{b}}^{*}-M_{\varLambda _{b}}=60~\mathrm{MeV}, respectively.  相似文献   

12.
Using the thermal entangled state representation 〈η|, we examine the master equation (ME) describing phase-sensitive reservoirs. We present the analytical expression of solution to the ME, i.e., the Kraus operator-sum representation of density operator ρ is given, and its normalization is also proved by using the IWOP technique. Further, by converting the characteristic function χ(λ) into an overlap between two “pure states” in enlarged Fock space, i.e., χ(λ)=〈η =−λ |ρ|η =0〉, we consider time evolution of distribution functions, such as Wigner, Q- and P-function. As applications, the photon-count distribution and the evolution of Wigner function of photon-added coherent state are examined in phase-sensitive reservoirs. It is shown that the Wigner function has a negative value when kt\leqslant\frac 12ln( 1+m) \kappa t\leqslant\frac {1}{2}\ln ( 1+\mu_{\infty}) is satisfied, where μ depends on the squeezing parameter |M|2 of environment, and increases as the increase of |M|.  相似文献   

13.
Similar in spirit to the preceding work (Int. J. Theor. Phys. 48:1539, 2009) where the relationship between wavelet transformation and Husimi distribution function is revealed, we study this kind of relationship to the entangled case. We find that the optical complex wavelet transformation can be used to study the entangled Husimi distribution function in phase space theory of quantum optics. We prove that, up to a Gaussian function, the entangled Husimi distribution function of a two-mode quantum state |ψ〉 is just the modulus square of the complex wavelet transform of e-|h|2/2e^{-\vert \eta \vert ^{2}/2} with ψ(η) being the mother wavelet.  相似文献   

14.
We report a study of the process pp→l±νγγ at CERN’s Large Hadron Collider, using a leading order partonic-level event generator interfaced to the Pythia program for showering and hadronisation and a with a generic detector simulation. The process is sensitive to possible anomalous quartic gauge boson couplings of the form WWγγ. It is shown how unitarity-safe limits may be placed on these anomalous couplings by applying a binned maximum likelihood fit to the distribution of the two-photon invariant mass, M γγ, below a cutoff of ∼1 TeV. Assuming 30 fb−1 of integrated luminosity, the expected limits are two orders of magnitude tighter than those available from LEP. It is also demonstrated how the Standard Model radiation zero feature of the q [`(q)]?W\upgamma\upgamma\bar{\mathrm{q}}^{\prime}\to\mathrm {W}\upgamma\upgamma process may be observed in the difference between the two-photon and charged lepton pseudo-rapidities.  相似文献   

15.
We prove the existence of equilibria of the N-vortex Hamiltonian in a bounded domain ${\Omega\subset\mathbb{R}^2}We prove the existence of equilibria of the N-vortex Hamiltonian in a bounded domain W ì \mathbbR2{\Omega\subset\mathbb{R}^2} , which is not necessarily simply connected. On an arbitrary bounded domain we obtain new equilibria for N = 3 or N = 4. If Ω has an axial symmetry we obtain a symmetric equilibrium for each N ? \mathbbN{N\in\mathbb{N}} . We also obtain new stream functions solving the sinh-Poisson equation -Dy = rsinhy{-\Delta\psi=\rho\sinh\psi} in Ω with Dirichlet boundary conditions for ρ > 0 small. The stream function yr{\psi_\rho} induces a stationary velocity field vr{v_\rho} solving the Euler equation in Ω. On an arbitrary bounded domain we obtain velocitiy fields having three or four counter-rotating vortices. If Ω has an axial symmetry we obtain for each N a velocity field vr{v_\rho} that has a chain of N counter-rotating vortices, analogous to the Mallier-Maslowe row of counter-rotating vortices in the plane. Our methods also yield new nodal solutions for other semilinear Dirichlet problems, in particular for the Lane-Emden-Fowler equation -Du=|u|p-1u{-\Delta u=|u|^{p-1}u} in Ω with p large.  相似文献   

16.
We study effects of static inter-qubit interactions on the stability of the Grover quantum search algorithm. Our numerical and analytical results show existence of regular and chaotic phases depending on the imperfection strength e\varepsilon . The critical border ec\varepsilon_c between two phases drops polynomially with the number of qubits n q as ec ~ nq-3/2\varepsilon_c \sim n_q^{-3/2} . In the regular phase (e < ec)(\varepsilon < \varepsilon_c) the algorithm remains robust against imperfections showing the efficiency gain ec / e\varepsilon_c / \varepsilon for e >~2-nq/2\varepsilon \gtrsim 2^{-n_q/2} . In the chaotic phase $(\varepsilon > \varepsilon_c)$(\varepsilon > \varepsilon_c) the algorithm is completely destroyed.  相似文献   

17.
18.
In this paper, we deal with operators of the form
on the space ℝn. It is assumed that the principal part of L is a uniformly strongly elliptic operator and the coefficients c α,β with |α| + |β| < 2m are distributions. We find sufficient conditions on these coefficients (in terms of generalized Sobolev spaces with negative smoothness indices to which these coefficients belong) for the operator in question to be well defined in the sense of quadratic forms. Dedicated to the memory of B. M. Levitan Paper supported by RFBR under grant no. 04-01-00712.  相似文献   

19.
We consider the Glauber dynamics for the 2D Ising model in a box of side L, at inverse temperature β and random boundary conditions τ whose distribution P either stochastically dominates the extremal plus phase (hence the quotation marks in the title) or is stochastically dominated by the extremal minus phase. A particular case is when P is concentrated on the homogeneous configuration identically equal to +  (equal to ?). For β large enough we show that for any ${\varepsilon >0 }We consider the Glauber dynamics for the 2D Ising model in a box of side L, at inverse temperature β and random boundary conditions τ whose distribution P either stochastically dominates the extremal plus phase (hence the quotation marks in the title) or is stochastically dominated by the extremal minus phase. A particular case is when P is concentrated on the homogeneous configuration identically equal to +  (equal to −). For β large enough we show that for any ${\varepsilon >0 }${\varepsilon >0 } there exists c=c(b,e){c=c(\beta,\varepsilon)} such that the corresponding mixing time T mix satisfies limL?¥ P(Tmix 3 exp(cLe)) = 0{{\rm lim}_{L\to\infty}\,{\bf P}\left(T_{\rm mix}\ge {\rm exp}({cL^\varepsilon})\right) =0}. In the non-random case τ ≡ +  (or τ ≡ −), this implies that Tmix £ exp(cLe){T_{\rm mix}\le {\rm exp}({cL^\varepsilon})}. The same bound holds when the boundary conditions are all +  on three sides and all − on the remaining one. The result, although still very far from the expected Lifshitz behavior T mix = O(L 2), considerably improves upon the previous known estimates of the form Tmix £ exp(c L\frac 12 + e){T_{\rm mix}\le {\rm exp}({c L^{\frac 12 + \varepsilon}})}. The techniques are based on induction over length scales, combined with a judicious use of the so-called “censoring inequality” of Y. Peres and P. Winkler, which in a sense allows us to guide the dynamics to its equilibrium measure.  相似文献   

20.
Consider the diffusive Hamilton-Jacobi equation u t = Δu + |?u| p , p > 2, on a bounded domain Ω with zero-Dirichlet boundary conditions, which arises in the KPZ model of growing interfaces. It is known that u remains bounded and that ?u may blow up only on the boundary ?Ω. In this paper, under suitable assumptions on ${\Omega\subset \mathbb{R}^2}Consider the diffusive Hamilton-Jacobi equation u t = Δu + |∇u| p , p > 2, on a bounded domain Ω with zero-Dirichlet boundary conditions, which arises in the KPZ model of growing interfaces. It is known that u remains bounded and that ∇u may blow up only on the boundary ∂Ω. In this paper, under suitable assumptions on W ì \mathbbR2{\Omega\subset \mathbb{R}^2} and on the initial data, we show that the gradient blow-up singularity occurs only at a single point x0 ? ?W{x_0\in\partial\Omega}. This is the first result of this kind in the study of problems involving gradient blow-up phenomena. In general domains of \mathbbRn{\mathbb{R}^n}, we also obtain results on nondegeneracy and localization of blow-up points.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号