首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
D J Potter 《Electrophoresis》1990,11(5):415-419
This paper reviews the CLIP image processing system for the complete analysis of two-dimensional electrophoresis images. The analysis problem for two-dimensional gel images can be broken down into three issues: segmentation of individual gel images, alignment and comparison of pairs of gel images, and information storage and retrieval. This paper describes these problems and reviews how the CLIP system handles each of them. Segmentation is the location and isolation of each protein spot on an individual gel image and also the extraction of individual spot data such as position, area and volume. There are three basic stages: background field correction, noise filtering, spot detection and information extraction. Alignment and comparison of gel images involves matching protein spots between two gels. This can be quite difficult because there is not a simple relationship which can transform one gel image onto another. The database issues concern storing all the information which has been obtained from the above operations such that retrieval of this information can be readily performed. The advantage of the CLIP system over others is speed of processing. CLIP series computers use one processor for every pixel of the camera image such that image processing algorithms run in parallel. The main disadvantage is in the cost of these machines. With the declining trend in the cost of parallel processors, these machines will become more and more viable alternatives. This papers reviews the algorithms for the analysis of two-dimensional gels. It is shown that CLIP is flexible enough to perform more than one type of algorithm for a particular operation.  相似文献   

2.
The quantitative comparison of spot patterns relies heavily on protein stains that do provide an appropriate dynamic range. Unfortunately most spot picking robot devices are still limited to nonfluorescent protein stains and the appropriate equipment is still quite expensive. These problems are solved by the application of a newly developed "GelMarker" that combines a spot picking robot device and a UV scanner. The "GelMarkers" are detectable in both the visible and UV range of light and permit the comparison of gel pictures taken by such different devices. The application of these "GelMarkers" together with the transformation of spot coordinates by using a "spot matching" procedure allows the automated excision of selected protein spots. The obtained picking accuracies are as good as those obtainable from visible stained gels due to the shape stability of the gels even over a longer time period.  相似文献   

3.
An approach for the computer-assisted analysis of two-dimensional gels has been developed as a part of our laboratory information processing system (LIPS). This approach relies in part on an algorithm for the pairwise matching of protein spots. The matching process initially matches spots based on a cross-correlational measure of how well neighboring spots align. While this first pass correctly determines most spot correspondences and noncorrespondences, it can make errors. Higher accuracy is obtained by monitoring the consistency of spot match decisions in a second pass, which demands that neighboring spot pairs that align spatially must also have been found to match in the first pass. Pairwise comparisons of gels are combined into n-way comparisons by matching spot lists of gels to "master" gel spot lists, which in turn are matched to higher level masters, resulting in a hierarchy of matched spots. After each pairwise match the results are reviewed and corrected with the assistance of a graphical match-editor. Results are given for 19 single-cell-derived lymphoid clones in which the presence of a mutation had previously been established, each processed in duplicate. Only one of 46 spot changes failed to be detected, which demonstrates that the strategy is sensitive and efficient for detecting qualitative spot differences.  相似文献   

4.
We propose a suite of novel algorithms for image analysis of protein expression images obtained from 2-D electrophoresis. These algorithms are a segmentation algorithm for protein spot identification, and an algorithm for matching protein spots from two corresponding images for differential expression study. The proposed segmentation algorithm employs the watershed transformation, k-means analysis, and distance transform to locate the centroids and to extract the regions of the proteins spots. The proposed spot matching algorithm is an integration of the hierarchical-based and optimization-based methods. The hierarchical method is first used to find corresponding pairs of protein spots satisfying the local cross-correlation and overlapping constraints. The matching energy function based on local structure similarity, image similarity, and spatial constraints is then formulated and optimized. Our new algorithm suite has been extensively tested on synthetic and actual 2-D gel images from various biological experiments, and in quantitative comparisons with ImageMaster2D Platinum the proposed algorithms exhibit better spot detection and spot matching.  相似文献   

5.
Danos O  Svinartchouk F 《Electrophoresis》2006,27(17):3475-3479
2-DE is an important tool in proteomics research. However, intrinsic gel-to-gel variability of 2-DE often masks the biological differences between the samples and compromises quantitative comparison of protein expression levels. Here, we describe a modification of 2-DE that results in improved matching and quantification of proteins. This was accomplished by performing IEF of two samples in two IPG strips separated by a dialysis membrane. After IEF running, the strips were separated and the SDS-PAGE dimension was accomplished on two individual gels. After gel staining with CBB, ImageMaster 2D Platinum software (Amersham) was used for spot detection and quantification. Analysis of protein extracts from C2C12 myoblasts by this method resulted in 99% spot-matching efficiency and CV in stain intensity (% volume) was less than 0.5 for 98% of spots. We conclude that this technique, called dialysis-assisted gel electrophoresis, gives superior spot matching and quantitative reproducibility compared to IEF conducted on separate strips.  相似文献   

6.
Raman B  Cheung A  Marten MR 《Electrophoresis》2002,23(14):2194-2202
While a variety of software packages are available for analyzing two-dimensional electrophoresis (2-DE) gel images, no comparisons between these packages have been published, making it difficult for end users to determine which package would best meet their needs. The goal here was to develop a set of tests to quantitatively evaluate and then compare two software packages, Melanie 3.0 and Z3, in three of the fundamental steps involved in 2-DE image analysis: (i) spot detection, (ii) gel matching, and (iii) spot quantitation. To test spot detection capability, automatically detected protein spots were compared to manually counted, "real" protein spots. Spot matching efficiency was determined by comparing distorted (both geometrically and nongeometrically) gel images with undistorted original images, and quantitation tests were performed on artificial gels with spots of varying Gaussian volumes. In spot detection tests, Z3 performed better than Melanie 3.0 and required minimal user intervention to detect approximately 89% of the actual protein spots and relatively few extraneous spots. Results from gel matching tests depended on the type of image distortion used. For geometric distortions, Z3 performed better than Melanie 3.0, matching 99% of the spots, even for extreme distortions. For nongeometrical distortions, both Z3 and Melanie 3.0 required user intervention and performed comparably, matching 95% of the spots. In spot quantitation tests, both Z3 and Melanie 3.0 predicted spot volumes relatively well for spot ratios less than 1:6. For higher ratios, Melanie 3.0 did much better. In summary, results suggest Z3 requires less user intervention than Melanie 3.0, thus simplifying differential comparison of 2-DE gel images. Melanie 3.0, however, offers many more optional tools for image editing, spot detection, data reporting and statistical analysis than Z3. All image files used for these tests and updated information on the software are available on the internet (http://www.umbc.edu/proteome), allowing similar testing of other 2-DE image analysis software packages.  相似文献   

7.
8.
9.
The comparison of proteins separated on 2DE is difficult due to gel-to-gel variability. Here, a method named comparative fluorescence gel electrophoresis (CoFGE) is presented, which allows the generation of an artificial protein grid in parallel to the separation of an analytical sample on the same gel. Different fluorescent stains are used to distinguish sample and marker on the gel. The technology combines elements of 1DE and 2DE. Special gel combs with V-shaped wells are placed in a stacking gel above the pI strip. Proteins separated on the pI strip are electrophoresed at the same time as marker proteins (commercially available purified protein of different molecular weight) placed in V-wells. In that way, grids providing approximately 100 nodes as landmarks for the determination of protein spot coordinates are generated. Data analysis is possible with commercial 2DE software capable of warping. The method improves comparability of 2DE protein gels, because they are generated in combination with regular in-gel anchor points formed by protein standards. This was shown here for two comparative experiments with three gels each using Escherichia coli lysate. For a set of 47 well-defined samples spots, the deviation of the coordinates was improved from 7% to less than 1% applying warping using the marker grid. Conclusively, as long as the same protein markers, the same size of pI-strips and the same technology are used, gel matching is reproducibly possible. This is an important advancement for projects involving comparison of 2DE-gels produced over several years and in different laboratories.  相似文献   

10.
Separation of complex mixtures of proteins by 2‐DE is a fundamental component of current proteomic technology. Quantitative analysis of the images generated by digitization of such gels is critical for identifying alterations in protein expression within a given biological system. Software packages are designed for this purpose. The accurate definition of protein spot boundaries, using a suitable method of image segmentation, is a key requirement for image analysis. It is often necessary for operators to intervene manually to correct mistakes in spot segmentation; therefore operator subjectivity and differences in ability can weaken the analysis. We estimated the error in spot quantification after manual spot segmentation, which was performed by different operators, using two different software packages. Our results clearly show that this operation was associated with significant inter‐ and intra‐variability and an overestimation of subsequent spot intensity, especially when spots were weak. For comparative studies, we suggest separately analysing spots which have been manually segmented by imposing a requirement for at least a threefold difference in spot intensity in addition to use of statistical tests.  相似文献   

11.
Gel electrophoresis is often used for the primary analysis and purification of proteins, and peptide mapping by matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) is a widely used technique for the rapid identification of unknown proteins. The identification is usually obtained by digesting the protein with an enzyme and matching the masses of the proteolytic peptides with those of each protein in a sequence database. Another important aspect in many proteomic experiments is the determination of the relative protein quantities (e.g. comparison between control and altered states). Usually, this is obtained by comparing the spot intensities of two independent gels. This procedure is time-consuming and not very accurate. Recently, several methodologies using isotope labeling of proteins for quantitative proteomic studies have been introduced (e.g. using ICAT reagents or growing cells in isotopically enriched nutrients). However, none of these methodologies is foolproof and there is still the need for simple and inexpensive alternatives for determining the relative quantities of proteins. Previously, we showed that a mixture of acrylamide and deuterated acrylamide could be used as cysteine alkylating reagent prior to electrophoresis, improving the coverage and the confidence of the protein identification procedure (Sechi S, Chait BT. Anal. Chem. 1998; 70: 5150). Here we show that a similar approach can be used to obtain relative quantitation at the femtomole level of proteins isolated by gel electrophoresis. Deuterated acrylamide is used to alkylate the cysteines in one sample and regular acrylamide is used to alkylate the cysteines in the second sample. The two samples are then mixed together in a 1:1 ratio and the relative protein quantities are determined from the ion intensity ratios of the two cysteine-containing peptides isotopic envelopes (regular/deuterated). The analysis of several proteins mixed in different ratios is reported showing that this approach can reliably be used for protein identification and quantification. Briefly, a simple and inexpensive method for quantifying and simultaneously identifying proteins isolated by gel electrophoresis using MALDI-MS is presented.  相似文献   

12.
The benefits of defining common spot boundaries when several gels from 2-DE are compared and analyzed have lately been stressed by both commercial software producers and users of this software. Though the importance of common spot boundaries is clearly stated, few reports exist that target this issue explicitly. In this study a method for defining common spots boundaries is developed, called the spot density method. The method consists of the following steps: segmentation and spot identification on each individual gel, transferring the spot-center coordinates for all gels onto a single new gel, collecting spot centers clustered together in the new gel and finally assigning pixels and new spot boundaries based on the spots in each cluster. The method is compared to a synthetic gel approach, and validated by visual inspection of three representative areas in the gels. The gel images need to be aligned prior to segmentation and spot identification, but the method can be used regardless of the choice of segmentation procedure. This makes the method an easy extension to existing methods for spot identification and matching. Conclusions based on the visual inspection are that the spot density method identifies partly overlapping spots and low-intensity spots better than the synthetic gel approach.  相似文献   

13.
We consider a characterization of proteomics maps based on an alternative kind of neighborhood graphs for the protein spots on 2-D gel. The novel approach considers for every protein spot only the nearest neighborhood consisting of protein spots of higher abundance. The approach has the simplicity and advantages of the recently introduced characterization of proteome maps based on considering the nearest neighborhoods of protein spots, but it also has important additional desirable computational features. The characterization of the nearest neighborhood graphs of 2-D gel proteomics maps is sensitive to the number of spots considered and may lead to changes in the degree of similarity of different maps when the number of points has been changed, thus imposing restrictions on the protocol used for comparison of maps. The novel approach presented in this work is less sensitive to the number of points used in the analysis because graphs are constructed in a stepwise process in which the role of more distant neighbors has been diminished by linking a new spot to the nearest spot that has been already part of the neighborhood graph. In this way a graph with N + 1 spots is obtained from the graph on N spots by adding a single new link, while in the case of the nearest neighborhood graphs adding a new spot introduces novel neighborhoods and generally results in a graph that may differ significantly from the neighborhood graph on N points.  相似文献   

14.
2‐DE is a fundamental technology used in proteomics research. However, despite its high capacity to simultaneously separate several proteins for subsequent identification and quantitative comparison studies, a drawback for this technique is its limited reproducibility, especially when comparing data from different laboratories. 2‐DE‐related variability can be broadly divided into two categories: experimental and post‐experimental. Experimental variability depends on physical and chemical parameters, whereas post‐experimental variability arises when gels are analyzed by different software packages, particularly when different workflows are followed. In this paper, we compared the analysis performance of two software packages, Delta2D and Proteomweaver, using both standard and experimental gel images. Using standard gel images, the false negative spot count was 50% lower, the false positive count was 77% lower, the true positive count was 19% higher and spot matching was 4% higher in Delta2D when compared to Proteomeweaver. Using experimental gel images, we found that the total amount of time taken to complete the analysis with Delta2D was 30% that of the time needed with Proteomweaver and required fewer user interventions. The differences between ease of use and workflow strategy of these programs is discussed.  相似文献   

15.
Proteomics requires a large-scale, simultaneous separation of proteins from a mixture, assessment of the relative abundance of these molecules, and identification and characterization of each component. In 2-D PAGE separations, the best method of choice for protein analysis, separation of all the proteins present in the sample is still far to be achieved and comigrating proteins in the same spot are in general present. A statistical estimation of the degree of spot overlapping present in a 2-D PAGE separation is here described: for different conditions of spot overcrowding in the map, the degree of overlapping can be quantified in terms of purity degree of each spot or percentage of proteins that will appear in the map as a single spot. A computer simulation approach is described: it is based on the protein separation pattern present in the experimental maps. The results thus obtained are compared to a theoretical model (statistical degree of peak overlapping model) based on random spot position. The described procedures were applied to an experimental reference map of human plasma. The severity of spot overlapping in 2-D PAGE maps is estimated and the influence of different experimental conditions (strip dimension, detector system performance, pI range) is discussed. These informations are useful to quantitatively estimate the degree of error associated with identification and quantitation of each protein and to set-up experimental conditions which will increase resolution and greatly decrease the probability of spot overlapping.  相似文献   

16.
Dried blood spot (DBS) sampling methods are desirable for population-wide biomarker screening programs because of their ease of collection, transportation, and storage. Immunoassays are traditionally used to quantify endogenous proteins in these samples but require a separate assay for each protein. Recently, targeted mass spectrometry (MS) has been proposed for generating highly-multiplexed assays for biomarker proteins in DBS samples. In this work, we report the first comparison of proteins in whole blood and DBS samples using an untargeted MS approach. The average number of proteins identified in undepleted whole blood and DBS samples by liquid chromatography (LC)/MS/MS was 223 and 253, respectively. Protein identification repeatability was between 77 %–92 % within replicates and the majority of these repeated proteins (70 %) were observed in both sample formats. Proteins exclusively identified in the liquid or dried fluid spot format were unbiased based on their molecular weight, isoelectric point, aliphatic index, and grand average hydrophobicity. In addition, we extended this comparison to include proteins in matching plasma and serum samples with their dried fluid spot equivalents, dried plasma spot (DPS), and dried serum spot (DSS). This work begins to define the accessibility of endogenous proteins in dried fluid spot samples for analysis by MS and is useful in evaluating the scope of this new approach.
Figure
?  相似文献   

17.
Plasma samples from adult male rats were separated by nondenaturing micro 2DE and a reference gel was selected, on which 136 CBB‐stained spots were numbered and subjected to in‐gel digestion and quantitative LC‐MS/MS. The analysis provided the assignment of 1–25 (average eight) non‐redundant proteins in each spot and totally 199 proteins were assigned in the 136 spots. About 40% of the proteins were detected in more than one spot and 15% in more than ten spots. We speculate this complexity arose from multiple causes, including protein heterogeneity, overlapping of protein locations and formation of protein complexes. Consequently, such results could not be appropriately presented as a conventional 2DE map, i.e. a list or a gel pattern with one or a few proteins annotated to each spot. Therefore, the LC‐MS/MS quantity data was used to reconstruct the gel distribution of each protein and a library containing 199 native protein maps was established for rat plasma. Since proteins that formed a complex would migrate together during the nondenaturing 2DE and thus show similar gel distributions, correlation analysis was attempted for similarity comparison between the maps. The protein pairs showing high correlation coefficients included some well‐known complexes, suggesting the promising application of native protein mapping for interaction analysis. With the importance of rat as the most commonly used laboratory animal in biomedical research, we expect this work would facilitate relevant studies by providing not only a reference library of rat plasma protein maps but a means for functional and interaction analysis.  相似文献   

18.
Treatment of poly(dimethylsiloxane) (PDMS) surfaces with SF(6) plasma results in the creation of high-surface-area nanotextured surfaces that considerably favour protein adsorption with respect to untreated ones. In order to employ such nanotextured surfaces as substrates for microarrays to be created and analysed using standard instrumentation, we fabricated thin PDMS films on top of standard low-cost microscope glass slides. The properties of both untreated and plasma-treated PDMS-coated slides towards spotting of protein solutions were evaluated in terms of spot signal intensity and homogeneity as well as of spot shape and size. It was found that the plasma-treated PDMS-coated glass slides provided highly homogeneous spots (mean intra-spot variation 7.6%) with spot signal intensity 6-times higher than that obtained using the untreated ones. In addition, comparison with commercially available polystyrene and aminosilanized-glass microarray slides showed that the proposed slides provided 3-times higher spot signal intensity and 2-times lower intra-spot signal variation. In addition, the implementation of long-aged-after-plasma-treatment nanotextured PDMS-coated glass slides provided spots whose shape and size matched those of the spotting tip. As a consequence, denser arrays of variable spot shape can be created using SF(6) plasma-treated PDMS-coated slides instead of standard microarray slides opening new potentials for bioanalytical applications.  相似文献   

19.
A workshop entitled Cellular Protein Databases from Two-Dimensional Gel Electrophoresis was held in Atlanta, Georgia, 28 February-1 March 1987. Its purpose was to assess the status of two-dimensional gel electrophoresis of proteins as a research methodology in biological systems, particularly in the generation of cellular protein databases. The workshop participants summarized current studies on a variety of biological systems, both prokaryotic and eukaryotic. Analysis of the progress being made led to the conclusion that electrophoretic techniques, supported by automatic scanning of gel images and computer-assisted processing, analysis and matching of gel images, are now capable of generating databases of great potential value. Factors affecting the reproducibility of protein spot patterns on gels were identified, and the extent to which gel pattern variability causes difficulties in communicating results and in integrating information from different laboratories was assessed. Measures were suggested to help overcome obstacles to the generation of comprehensive cellular protein databases from the electrophoretic resolution of total cellular proteins.  相似文献   

20.
In situations where the molecular mechanism of many ocular disorders is unknown, owing to the difficulties associated with sampling from ocular tissues, human tear film can be a promising medium in ophthalmic research. The present study demonstrates an in‐depth gel‐based proteome optimization survey to approach more appropriate and efficient systems in various situations such as normal and dry‐eye syndromes. Therefore, systematic and statistical evaluations were performed on different preparation methods, including acetone, acetone–methanol, chloroform–methanol–water, trichloroacetic acid (TCA)–acetone, tri‐n‐butylphosphate–acetone–methanol precipitations and ammonium sulfate fractionation at three different percentages of saturations (50, 70 and 90%). Methods were compared quantitatively on both one‐ and two‐dimensional patterns. Some important parameters such as total protein recovery yield, densitometric analysis of some protein contaminants, banding patterns and total spot numbers along with statistical models for proper clustering were considered. Findings revealed noticeable impacts of preparation methods on all aspects of gel‐based separations as well as recovery yield (ranging from 5.29 ± 0.96 to 22.56 ± 1.77 µg/mm) and banding and pattern resolution. In addition to all these, the most important point is that the total protein spot number on the final two‐dimensional patterns (varied from 528.00 ± 19.00 to 657.00 ± 21.52 for different methods) were also noticeably increased in comparison with previously published reports (maximum of 250 spots), which is essential for a more comprehensive analysis. Increasing the proteome coverage in the present study is supposed to originate from improved solubility and effective rehydration during the sample application and isoelectric focusing (IEF) procedure along with proper sample preparation. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号