首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Gallium and zirconium octaethylporphyrin (OEP) and tetraphenylporphyrin (TPP) were examined by electrospray ionization (ESI) mass spectrometry. All systems were prepared in dichloromethane with addition of a stabilizing lipophilic anionic agent, sodium tetrakis[3,5-bis(trifluoromethyl)phenyl]borate (NaTFPB). In the solutions examined both monomeric and dimeric metalloporphyrins were observed. In the gallium-OEP mass spectrum the ion registered at m/z 601 was attributed to monomeric [Ga(OEP)](+) and that at m/z 1219 to the dimeric form, [[Ga(OEP)](2)OH](+). Peaks appearing in the ESI mass spectra of zirconium systems were substantially less intense, probably owing to the relatively low stability of complexes of this metal caused by its different geometry preferences. The most abundant monomeric zirconium-OEP complexes were [[Zr(OEP)OH]](+) (m/z 639) and [Zr(OEP)Cl](+) (m/z 657), and dimeric [[Zr(OEP)OH](2)](2+) (m/z 639). Analogous species were observed in the Zr(TPP) system: monomeric [[Zr(OEP)OH]](+) (m/z 719) and [Zr(TPP)Cl](+) (m/z 737) and dimeric [[Zr(TPP)OH](2)](2+) (m/z 719). In both cases series of other dimers, e.g. [[Zr(OEP)](2)O(2)H](+) (m/z 1277), [[Zr(OEP)OH](2)Cl](+) (m/z 1313), [Zr(TPP)(2)O(2)H](+), (m/z 1437), [[Zr(TPP)OH](2)OH](+) (m/z 1455) and [[Zr(TPP)OH](2)Cl](+) (m/z 1473), appeared. The results obtained confirmed the hypothesis concerning the formation of dimeric metalloporphyrins in solutions containing stabilizing lipophilic anions. It also allowed us to explain the super-Nernstian slopes of the calibration curves towards primary anions of ion-selective electrodes with membranes containing the examined metalloporphyrins.  相似文献   

2.
Experimental and computational results for different ruthenium nitrosyl porphyrin complexes [(Por)Ru(NO)(X)] ( n+ ) (where Por (2-) = tetraphenylporphyrin dianion (TPP (2 (-) )) or octaethylporphyrin dianion (OEP (2-)) and X = H 2O ( n = 1, 2, 3) or pyridine, 4-cyanopyridine, or 4- N,N-dimethylaminopyridine ( n = 1, 0)) are reported with respect to their electron-transfer behavior. The structure of [(TPP)Ru(NO)(H 2O)]BF 4 is established as an {MNO} species with an almost-linear RuNO arrangement at 178.1(3) degrees . The compound [(Por)Ru(NO)(H 2O)]BF 4 undergoes two reversible one-electron oxidation processes. Spectroelectrochemical measurements (IR, UV-vis-NIR, and EPR) indicate that the first oxidation occurs on the porphyrin ring, as evident from the appearance of diagnostic porphyrin radical-anion vibrational bands (1530 cm (-1) for OEP (*-) and 1290 cm (-1) for TPP (*-)), from the small shift of approximately 20 cm (-1) for nu NO and from the EPR signal at g iso approximately 2.00. The second oxidation, which was found to be electrochemically reversible for the OEP compound, shows a 55 cm (-1) shift in nu NO, suggesting a partially metal-centered process. The compounds [(Por)Ru(NO)(X)]BF 4, where X = pyridines, undergo a reversible one-electron reduction. The site of the reduction was determined by spectroelectrochemical studies to be NO-centered with a ca. -300 cm (-1) shift in nu NO. The EPR response of the NO (*) complexes was essentially unaffected by the variation in the substituted pyridines X. DFT calculations support the interpretation of the experimental results because the HOMO of [(TPP)Ru(NO)(X)] (+), where X = H 2O or pyridines, was calculated to be centered at the porphyrin pi system, whereas the LUMO of [(TPP)Ru(NO)(X)] (+) has about 50% pi*(NO) character. This confirms that the (first) oxidation of [(Por)Ru(NO)(H 2O)] (+) occurs on the porphyrin ring wheras the reduction of [(Por)Ru(NO)(X)] (+) is largely NO-centered with the metal remaining in the low-spin ruthenium(II) state throughout. The 4% pyridine contribution to the LUMO of [(TPP)Ru(NO)(py)] (+) is correlated with the stability of the reduced form as opposed to that of the aqua complex.  相似文献   

3.
The nucleophilic addition reaction of a pyrrole nitrogen of free-base porphyrins to a pi-complexed acetylene ligand in a cationic Co(III) porphyrin intermediate afforded good yields of vinylene-Co,N'-linked bis(porphyrin)s, (Por)Co(III)-CH=CH-(N-Por)H(2). N-substituted porphyrin free bases are N-vinylated regioselectively at the pyrrole adjacent to the original N-substituted pyrrole in this reaction. Tris- and tetrakis(porphyrin)s have been prepared by reacting a vinylene-N,N'-linked bis(meso-tetraarylporphyrin) with (OEP)Co(III)(H(2)O)(2)ClO(4) (OEP: octaethylporphyrin dianion) and acetylene. The tetrakis(porphyrin) proved to be a 1:1 mixture of C(i)()- and C(2)-symmetric regioisomers. These organometallic Co(III) complexes underwent facile oxidative migration of the Co-bound vinyl group to a porphyrin pyrrole nitrogen when treated with Fe(III) salts or HClO(4) to provide moderate to good yields of Co(II) vinylene-N,N'-linked multi(porphyrin) complexes. (Vinylene-N,N')bis(porphyrin) free bases with combinations of different porphyrins have been obtained by this procedure. The homobinuclear (2Co(II), 2Cu(II), and 2Zn(II)) and heterobinuclear (Co(II)Cu(II) and Co(II)Zn(II)) complexes have been prepared and characterized spectroscopically. The single-crystal X-ray analysis of (CH=CH-N,N')[(OEP)Co(II)Cl][(TPP)Zn(II)Cl] (TPP: meso-tetraphenylporphyrin dianion) showed a face-to-face structure with an average inter-ring separation of 4.39 ? (triclinic P&onemacr;; Z = 2; a = 14.806(4), b = 18.703(10), c = 13.796(3) ?, alpha = 97.69(3), beta = 99.57(2), gamma = 96.74(3) degrees ).  相似文献   

4.
Leung SK  Huang JS  Zhu N  Che CM 《Inorganic chemistry》2003,42(22):7266-7272
Reactions of dioxoosmium(VI) porphyrins [Os(VI)(Por)O(2)] with excess 1,1-diphenylhydrazine in tetrahydrofuran at ca. 55 degrees C for 15 min afforded bis(hydrazido(1-))osmium(IV) porphyrins [Os(IV)(Por)(NHNPh(2))(2)] (1a, Por = TPP (meso-tetraphenylporphyrinato dianion); 1b, Por = TTP (meso-tetrakis(p-tolyl)porphyrinato dianion)), hydroxo(amido)osmium(IV) porphyrins [Os(IV)(Por)(NPh(2))(OH)] (2a, Por = TPP; 2b, Por = TTP), and bis(hydrazido(2-))osmium(VI) porphyrin [Os(VI)(Por)(NNPh(2))(2)] (3c, Por = TMP (meso-tetramesitylporphyrinato dianion)). The same reaction under harsher conditions (in refluxing tetrahydrofuran for ca. 1 h) gave a nitridoosmium(VI) porphyrin, [Os(VI)(Por)(N)(OH)] (4b, Por = TTP). Oxidation of 1a,b with bromine in dichloromethane afforded bis(hydrazido(2-)) complexes [Os(VI)(TPP)(NNPh(2))(2)] (3a) and [Os(VI)(TTP)(NNPh(2))(2)] (3b), respectively. All the new osmium porphyrins were identified by (1)H NMR, IR, and UV-vis spectroscopy and mass spectrometry; the structure of 2b was determined by X-ray crystallography (Os-NPh(2) = 1.944(6) A, Os-OH = 1.952(5) A).  相似文献   

5.
Treatment of GeCl2(dioxane) with Li2(TPP)(OEt2)2 (TPP = tetraphenylporphyrin) in THF yields Ge(TPP), the first free Ge(II) porphyrin complex. In pyridine Ge(TPP) is converted to Ge(TPP)(py)2, an antiaromatic Ge(IV) complex, whereas in benzene the reaction is reversed, and pyridine dissociates from Ge(TPP)(py)2 to form Ge(TPP). That reversible reaction represents an unusual, if not unique, example of an oxidation-state change in a metal induced by coordination of a dative ligand. UV-vis and 1H NMR spectroscopy show that Ge(TPP) is an aromatic Ge(II) porphyrin complex, while the 1H NMR spectrum of Ge(TPP)(py)2 clearly indicates the presence of a strong paratropic ring current, characteristic of an antiaromatic compound. Both Ge(TPP) and Ge(TPP)(py)2 have been crystallographically characterized, and the antiaromaticity of Ge(TPP)(py)2 leads to alternating short and long C-C bonds along the 20-carbon periphery of its porphine ring system. Coordination of pyridine to Ge(TPP) greatly increases its reducing ability: the Ge(TPP)0/2+ redox potential is about +0.2 V, while the Ge(TPP)(py)2(0/+) redox potential is -1.24 V (both vs. ferrocene). The equilibrium constant of the reaction Ge(TPP) + 2 py = Ge(TPP)(py)2 in C6D6 is 22 M-2. The germanium complex of the more electron-withdrawing tetrakis[3,5-bis(trifluoromethyl)phenyl]porphyrin, Ge(TArFP), and its pyridine adduct Ge(TArFP)(py)2 were synthesized. The equilibrium constant of the reaction Ge(TArFP) + 2 py = Ge(TArFP)(py)2 in C6F6/C6D6 is 2.3 x 10(4) M-2. Density functional theory calculations are consistent with the experimental observation that M(TPP)(py)2 formation from M(TPP) and pyridine is most favorable for M=Si, borderline for Ge, and unfavorable for Sn.  相似文献   

6.
Porphyrin derivatives of transition metals such as Ru(TPP)CO, Ru(OEP)CO and Co(OEP)(TPP=dianion of 5, 10, 15, 20-tetraphenylporphyrin, OEP=dianion of 2, 3, 7, 8, 12, 13, 17, 18-octaetylporphyrin) catalyse the reaction of p-nitrophenylazide with cyclohexene to give the corresponding allylamine in good yields. With other olefins such as cyclooctene, 1-octene, styrene and substituted styrenes the main product becomes the corresponding aziridine. The reaction of p-nitrophenylazide with Ru(TPP)CO has been investigated and the mechanism of the catalytic reactions is discussed.  相似文献   

7.
The influence of a hydrogen bond to the coordinated imidazole on the geometric and electronic structure of iron has been further studied in new complexes of five-coordinate high-spin imidazole-ligated iron(II) porphyrinates. With 1,10-phenanthroline (1,10-phen) as the hydrogen-bond acceptor, several new octaethylporphyrin dianion (OEP) and meso-tetraphenylporphyrin dianion (TPP) derivatives have been synthesized and characterized by X-ray crystallography and M?ssbauer spectroscopy. In all three new structures, the porphyrin molecules and 1,10-phenanthroline molecules have been found with a ratio of 1:1. All the porphyrin derivatives are five-coordinate 2-methylimidazole-ligated iron(II) species. 1,10-Phenanthroline is hydrogen bonded to the coordinated imidazole to form two unequal hydrogen bonds. The Fe-N p and Fe-N Im bond lengths and displacement of the iron atom out of the porphyrin plane are similar to those in imidazole-ligated species. M?ssbauer measurements showed remarkable temperature dependence; the analysis of the data obtained in applied magnetic field for [Fe(OEP)(2-MeHIm)].(1,10-phen) gave a negative quadrupole splitting value and large asymmetry parameters. All the structural and M?ssbauer properties suggest that these new hydrogen-bonded species have the same electronic configuration as imidazole-ligated species.  相似文献   

8.
We have examined the redox behavior of the osmium and ruthenium compounds (OEP)M(NO)(OEt) and (OEP)M(NO)(SEt) (OEP = octaethylporphyrinato dianion; M = Os, Ru) by cyclic voltammetry and infrared spectroelectrochemistry. The compound (OEP)Os(NO)(OEt) undergoes a single reversible oxidation process in dichloromethane. In contrast, the thiolate compound (OEP)Os(NO)(SEt) undergoes a net irreversible oxidation resulting in formal loss of the SEt ligand. Extended Hückel calculations on crystal structures of these two compounds provide insight into the nature of their HOMOs. In the case of the alkoxide compound, the HOMO is largely metal centered, with 70% of the charge located in the metal's orbital and approximately 25% on the porphyrin ring. However, the HOMO of the thiolate compound consists of a pi bonding interaction between the metal dxz orbital and the px orbital on the sulfur, and a pi antibonding interaction between the metal d orbital and a pi* orbital on NO. The redox behavior of the Ru analogues have been determined, and are compared with those of the Os compounds.  相似文献   

9.
The following five antimony(V) tetraphenylporphyrins with sigma-bonded antimony-carbon bonds were synthesized: [(TPP)Sb(CH(3))(2)](+)PF(6)(-), [(TPP)Sb(OCH(3))(OH)](+)PF(6)(-), [(TPP)Sb(CH(3))(OH)](+)ClO(4)(-), [(TPP)Sb(CH(3))(OCH(3))](+)ClO(4)(-), and [(TPP)Sb(CH(3))(F)](+)PF(6)(-). Each compound is stable toward air and moisture and has a high melting point (>250 degrees C). The electrochemistry and spectroelectrochemistry of these sigma-bonded porphyrins were examined in benzonitrile or dichloromethane containing 0.1 M tetrabutylammonium perchlorate as supporting electrolyte and the data compared to those for three previously synthesized OEP derivatives containing similar sigma-bonded and/or anionic axial ligands. Each porphyrin shows two reversible reductions and up to a maximun of one oxidation within the potential window of the solvent. Spectroelectrochemical data indicate formation of a porphyrin pi anion radical upon the first reduction as do ESR spectra of the singly reduced species. However, a small amount of the Sb(III) porphyrin products may be generated via a chemical reaction following electron tranfer. An X-ray crystallographic analysis of [(TPP)Sb(CH(3))(F)](+)PF(6)(-) is also presented: monoclinic, space group C2/c, Z = 8, a = 24.068(5) ?, b = 19.456(4) ?, c = 18.745(3) ?, beta = 94.69(2) degrees, R = 0.056.  相似文献   

10.
通过在铽的酞菁卟啉混杂三层的卟啉周边共价连接体积庞大的笼型倍半硅氧烷(POSS), 得到了首个包含POSS的混杂三层Tb2(Pc)[T(OPOSS)4PP]2 (1)[H2Pc=phthalocyanine;H2T(OPOSS)4PP=5, 10, 15, 20-tetra{[[N-[heptakis(isobutyl)propoxy]phenyl]octasiloxane]}porphyrin]。为了对比研究, 同时合成了类似的三层化合物Tb2(Pc)(TPP)2(2)(H2TPP=5,10,15,20-tetraphenyporphyrin)。尤其值得注意的是, 在没有外加磁场的条件下, Tb2(Pc)[T(OPOSS)4PP]2(1)和Tb2(Pc)(TPP)2(2)分别表现出单分子磁体和非单分子磁体的性质, 这充分说明了共价连接均匀分布的POSS基团有效地分离了磁性核心, 从而改善了酞菁卟啉混杂三层的磁性。  相似文献   

11.
The powder and single-crystal EPR spectra of Co(II)(OEP) (OEP is the dianion of octaethylporphyrin) doped into a range of diamagnetic crystals including simple four-coordinate hosts, H(2)(OEP), the triclinic B form of Ni(II)(OEP), the tetragonal form of Ni(II)(OEP) and Zn(II)(OEP); five-coordinate hosts, micro-dioxane)[Zn(II)(OEP)](2) and (py)Zn(II)(OEP); six-coordinate hosts, (py)(2)Zn(II)(OEP) and (py)(2)Mg(II)(OEP); and hosts containing fullerenes, C(60).2Zn(II)(OEP).CHCl(3), C(70).Ni(II)(OEP).C(6)H(6).CHCl(3), and C(60).Ni(II)(OEP).2C(6)H(6) have been obtained and analyzed. Spectra were simulated using a program that employed the exact diagonalization of the 16 x 16 complex spin Hamiltonian matrix. The EPR spectra of these doped samples are very sensitive to the environment within each crystal with the crystallographic site symmetry determining whether axial or rhombic resonance patterns are observed. For Co(II)(OEP) doped into tetragonal Ni(II)(OEP) (which displays a very large g( perpendicular ) of 3.405 and a very small g( parallel ) of 1.544) and several other crystals containing four-coordinate metal sites, the g components could not be fit using existing theory with the assumption of the usual z(2) ground state. However, reasonable agreement of the observed EPR parameters could be obtained by assuming that the unpaired electron resides in an xy orbital in the four-coordinate complexes.  相似文献   

12.
Treatment of tetraphenylporphyrinato(aluminum) chloride, Al(TPP)Cl, with Na/Hg in THF yields the stable radical Al(TPP)(THF)2. Similarly, treatment of aluminum phthalocyanine chloride, Al(Pc)Cl, with Na/Hg in THF yields the stable radical Al(Pc)(THF)2. Solution-phase magnetic susceptibility measurements show that both are monomeric radicals in solution, and ESR spectroscopy and density functional theory (DFT) calculations indicate that in both molecules the unpaired electron is delocalized throughout the ring system. While DFT calculations indicate that both molecules should undergo a Jahn-Teller distortion, only the porphyrin complex exhibits the predicted C-C bond length alternation in its X-ray crystal structure. That distortion of the ring system has precedent only in the similar reduced porphyrin complex Si(TPP)(THF)2.  相似文献   

13.
通过在铽的酞菁卟啉混杂三层的卟啉周边共价连接体积庞大的笼型倍半硅氧烷(POSS),得到了首个包含POSS的混 杂三层Tb2(Pc)[T(OPOSS)4PP]2(1)[H2Pc=phthalocyanine;H2T(OPOSS)4PP=5,10,15,20-tetra{[[N-[heptakis(isobutyl)propoxy]phenyl]octasiloxane]}porphyrin]。为了对比研究,同时合成了类似的三层化合物Tb2(Pc)(TPP)2(2)(H2TPP=5,10,15,20-tetraphenyporphyrin)。尤其值得注意的是,在没有外加磁场的条件下,Tb2(Pc)[T(OPOSS)4PP]2(1)和Tb2(Pc)(TPP)2(2)分别表现出单分子磁体和非单分子磁体的性质,这充分说明了共价连接均匀分布的POSS基团有效地分离了磁性核心,从而改善了酞菁卟啉混杂三层的磁性。  相似文献   

14.
Time-resolved and steady-state electron paramagnetic resonance (EPR) spectra have been observed for the lowest excited triplet (T(1)) states of phenazine (Phz) and its singly protonated cation (phenazinium) in sulfuric acid-ethanol mixtures at 77K. The single protonation appears to have little effect on the anisotropic sublevel populating rates of the T(1) state of phenazine. However, the zero-field splitting (ZFS) parameter D decreases on the protonation, reflecting the increase of delocalization of the two unpaired electrons. The sublevel preferentially populated by intersystem crossing (ISC) is T(y) in both phenazine and phenazinium (the y-axis is parallel to the in-plane long axis). From the analysis of the observed anisotropy in the ISC rates and the semi empirical molecular orbital calculations of the ZFS parameters, we concluded that the T(1) state of phenazinium is the (3)A(1)(pipi*) state.  相似文献   

15.
A variety of phosphorus(V) octaethylporphyrin derivatives of the type [P(OEP)(X)(Y)](+)Z(-) (OEP: octaethylporphyrin) (X = CH(3), CH(2)CH(3), C(6)H(5), F; Y = CH(3), CH(2)CH(3), OH, OCH(3), OCH(2)CH(3), On-Pr, Oi-Pr, Osec-Bu, NHBu, NEt(2), Cl, F, O(-); Z = ClO(4), PF(6)) were prepared. X-ray crystallographic analysis of eleven compounds reveals that the degree of ruffling of the porphyrin core becomes greater and the average P-N bond distance becomes shorter as the axial ligands become more electronegative. Therefore, the electronic effect of the axial substituents plays a major role in determining the degree of ruffling although the steric effect of the substituents plays some role. A comparison of the (1)H NMR chemical shifts for the series of [P(OEP)(CH(2)CH(3))(Y)](+)Z(-) complexes with those of the corresponding arsenic porphyrins, which possess a planar core, indicates a much smaller ring current effect of the porphyrin core in the severely ruffled phosphorus porphyrins. The electrochemistry, spectroelectrochemistry and ESR spectroscopy of the singly reduced compounds are also discussed. The OH protons of [P(OEP)(X)(OH)](+) are acidic enough to generate P(OEP)(X)(O) by treatment with aq dilute NaOH. X-ray analysis of P(OEP)(CH(2)CH(3))(O) reveals that the PO bond length is very short (1.475(7) A) and is comparable to that in triphenylphosphine oxide (1.483 A). The features of the quite unique hexacoordinate hypervalent compounds are investigated by density functional calculation of a model (Por)P(CH(2)CH(3))(O) and (Por)P(F)(O) (Por: unsubstituted porphyrin).  相似文献   

16.
Lim MH  Lippard SJ 《Inorganic chemistry》2004,43(20):6366-6370
The ruthenium(II) porphyrin fluorophore complexes [Ru(TPP)(CO)(Ds-R)] (TPP = tetraphenylporphinato dianion; Ds = dansyl; R = imidazole (im), 1, or thiomorpholine (tm), 2) were synthesized and investigated for their ability to detect nitric oxide (NO) based on fluorescence. The X-ray crystal structures of 1 and 2 were determined. The Ds-im or Ds-tm ligand coordinates to an axial site of the ruthenium(II) center through a nitrogen or sulfur atom, respectively. Both exhibit quenched fluorescence when excited at 368 or 345 nm. Displacement of the metal-coordinated fluorophore by NO restores fluorescence within minutes. These observations demonstrate fluorescence-based NO detection using ruthenium porphyrin fluorophore conjugates.  相似文献   

17.
The rate constants of intermolecular photoinduced electron transfer from triplet excited states of metalloporphyrins to a series of p-benzoquinone derivatives in benzonitrile were determined to examine the effects of the driving force, the metal, and the conformational distortion of the porphyrin ring on the reorganization energies (λ) of electron transfer by laser flash photolysis. The λ values were evaluated from the determined rate constants on the basis of the Marcus theory of electron transfer. The λ values of planar metalloporphyrins, [Al(TPP)(PhCOO)] and [Zn(TPP)] (TPP(2-)=tetraphenylporphyrin dianion), are approximately the same, but they are 0.27 eV smaller than those of the corresponding nonplanar (saddle-distorted) metalloporphyrins [Al(DPP)(PhCOO)] and [Zn(DPP)] (DPP(2-)=dodecaphenylporphyrin dianion) when they are compared for the same driving force of photoinduced electron transfer. The axial ligand PhCOO(-) of [Al(TPP)](+) and [Al(DPP)](+) was replaced by anthraquinone-2-carboxylate (AqCOO(-)) to afford the electron donor-acceptor complexes [Al(TPP)(AqCOO)] and [Al(DPP)(AqCOO)], respectively. The X-ray crystal structure of [Al(TPP)(AqCOO)] revealed strong coordination of AqCOO(-) to the Al(3+) ion of [Al(TPP)](+) and the existence of π-π interactions between AqCOO(-) and the porphyrin ring. In the case of the saddle-distorted [Al(DPP)(AqCOO)], however, the AqCOO(-) moiety is nearly perpendicular to the porphyrin ring. The photodynamics of intracomplex photoinduced electron transfer from the singlet excited state of [Al(TPP)](+) and [Al(DPP)](+) to the AqCOO(-) moiety were also examined in comparison with the intermolecular photoinduced electron-transfer reactions, and the determined rate constants were evaluated in light of the Marcus theory of electron transfer to reveal that the electron transfer is adiabatic in each case.  相似文献   

18.
A reproducible synthesis of a competent epoxidation catalyst, [Ru(VI)(TPP)(O)2)] (TPP = tetraphenylporphyrin dianion), starting from [Ru(II)(TPP)(CO)L] (L = none or CH3OH), is described. The molecular structure of the complex was determined by using ab initio X-ray powder diffraction (XRPD) methods, and its solution behavior was in detail investigated by NMR techniques such as PGSE (pulsed field gradient spin-echo) measurements. [Ru(IV)(TPP)(OH)]2O, a reported byproduct in the synthesis of [Ru(VI)(TPP)(O)2], was synthesized in a pure form by oxidation of [Ru(II)(TPP)(CO)L] or by a coproportionation reaction of [Ru(VI)(TPP)(O)2] and [Ru(II)(TPP)(CO)L], and its molecular structure was then determined by XRPD analysis. [Ru(VI)(TPP)(O)2] can be reduced by dimethyl sulfoxide or by carbon monoxide to yield [Ru(II)(TPP)(S-DMSO)2] or [Ru(II)(TPP)(CO)(H2O)], respectively. These two species were characterized by conventional single-crystal X-ray diffraction analysis.  相似文献   

19.
Model ferric heme nitrosyl complexes, [Fe(TPP)(NO)](+) and [Fe(TPFPP)(NO)](+), where TPP is the dianion of 5,10,15,20-tetrakis-phenyl-porphyrin and TPFPP is the dianion of 5,10,15,20-tetrakis-pentafluorophenyl-porphyrin, have been obtained as isolated species by the gas phase reaction of NO with [Fe(III)(TPP)](+) and [Fe(III) (TPFPP)](+) ions delivered in the gas phase by electrospray ionization, respectively. The so-formed nitrosyl complexes have been characterized by vibrational spectroscopy also exploiting (15)N-isotope substitution in the NO ligand. The characteristic NO stretching frequency is observed at 1825 and 1859 cm(-1) for [Fe(III)(TPP)(NO)](+) and [Fe(III)(TPFPP)(NO)](+) ions, respectively, providing reference values for genuine five-coordinate Fe(III)(NO) porphyrin complexes differing only for the presence of either phenyl or pentafluorophenyl substituents on the meso positions of the porphyrin ligand. The vibrational assignment is aided by hybrid density functional theory (DFT) calculations of geometry and electronic structure and frequency analysis which clearly support a singlet spin electronic state for both [Fe(TPP)(NO)](+) and [Fe(TPFPP)(NO)](+) complexes. Both TD-DFT and CASSCF calculations suggest that the singlet ground state is best described as Fe(II)(NO(+)) and that the open-shell AFC bonding scheme contribute for a high-energy excited state. The kinetics of the NO addition reaction in the gas phase are faster for [Fe(III)(TPFPP)](+) ions by a relatively small factor, though highly reliable because of a direct comparative evaluation. The study was aimed at gaining vibrational and reactivity data on five-coordinate Fe(III)(NO) porphyrin complexes, typically transient species in solution, ultimately to provide insights into the nature of the Fe(NO) interaction in heme proteins.  相似文献   

20.
We have designed a porphyrin with a Schiff-base substituent as a model to study intramolecular hydrogen-bonding. The corresponding complex [Zn(SATPP)(CH3OH)] has been synthesized and characterized by X-ray crystallography, 1H NMR, and UV-Vis spectroscopy. The structure shows that there are three phenyl groups and one salicylideneaminophenyl group at the meso positions of the porphyrin, and the phenol oxygen is involved in double hydrogen bonds, one within the salicylideneaminophenyl and the other between coordinated methanol and phenol oxygen. 1H NMR spectra suggest that the binding of methanol to zinc is an equilibrium process in solution and the equilibrium constant has been determined by UV-Vis measurements. The intramolecular hydrogen bond stabilizes the structure, and the binding affinity increases 10 times over the corresponding TPP (TPP, dianion of meso-5,10,15,20-tetraphenylporphyrin).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号