首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
New, short, and flexible procedures have been developed for syntheses of steroid and D-homo steroid skeletons. A Mukaiyama reaction between the silyl enol ether of 6-methoxytetralone and 2-methyl-2-cyclopentenone or carvone, with transfer of the silyl group to the receiving enone, gave a second silyl enol ether. Addition of a carbocation, generated under Lewis acid conditions from 3-methoxy-2-butenol, 3-ethoxy-3-phenyl-2-propenol or 3-methoxy-2-propenol to this second silyl enol ether gave adducts, which could not be cyclized by aldol condensation to (D-homo) steroid skeletons. The Mukaiyama-Michael reaction of the silyl enol ether of 6-methoxy tetralone with 2-methyl-2-cylopentenone gave a second silyl enol ether, which reacted in high yield with a carbocation generated from 3-hydroxy-3-(4-methoxyphenyl)propene. Ozonolysis of the double bond in this adduct gave a tricarbonyl compound (Zieglers triketone), which has been used before in the synthesis of 9,11-dehydroestrone methyl ether. A second synthesis of C17 substituted CD-trans coupled (D-homo) steroid skeletons has been developed via addition of a carbocation, generated with ZnBr2 from a Torgov reagent, to a silyl enol ether containing ring D precursor. The obtained seco steroids have been cyclized under formation of the 8-14 bond by treatment with acid. The double bonds in one of the cyclized products have been reduced to a C17-substituted all trans steroid skeleton.  相似文献   

2.
Cyclometallation of two unsaturated carbon-carbon bonds usually requires the application of low-valent metal catalysts, which could cleave the propargylic ester linkage. Thus, it is desirable to identify a catalyst which could undergo cyclometallation without cleaving the propargylic ester linkage. In this paper, we used trans-RhCl(CO)(PPh(3))(2) to realize the cyclometallation of propargylic 2,3-dienoates. The substituents at the 4-position of allenoate moiety nicely control the reaction pathway: when the 4-position of propargylic 2,3-dienoate 1 was monosubstituted with an aryl group, the bicyclic intermediate 7 formed by the cyclometallation could highly selectively undergo carbometalation with the alkyne moiety in the second molecule of propargylic 2,3-dienoate 1 to afford metallabicyclic intermediates 8a or 8b. Subsequent reductive elimination would afford 9, which could undergo an intramolecular Diels-Alder reaction resulting in the formation of polycyclic bis(delta-lactone)-containing structures 2. The intermediate could be trapped by adding 3-methoxyprop-1-yne affording cyclization-aromatization product 4p highly selectively. If the substituent at the 4-positon of the 2,3-allenoate moiety has a beta-H atom, sequential unimolecular cyclometallation/beta-H elimination/reductive elimination occurs to afford cross-conjugated 5(Z)-alkylidene-4-alkenyl-5,6-dihydropyran-2-ones. The Z-stereochemistry of the exo double bond was determined by the cyclometallation. Some of the alpha,beta-unsaturated delta-lactones could be easily converted to other synthetically useful compounds via reduction reaction, hydrogenation, and iodination/coupling protocol.  相似文献   

3.
An efficient catalytic (2 + 2)-cycloaddition reaction leading to the formation of cyclobutane rings has been devised. The process transforms silyl enol ethers and alpha,beta-unsaturated esters into polysubstituted cyclobutanes with a high degree of trans-stereoselectivity. Both the rate and stereoselectivity of the process can be controlled by the choice of the ester group and silyl substituents. The results of stereochemical studies show that the cycloaddition step in this reaction proceeds in a nonstereospecific manner and, thus, by a pathway involving sequential nucleophilic additions via a short-lived zwitterionic intermediate.  相似文献   

4.
Catalytic asymmetric aldol reactions in aqueous media have been developed using Pr(OTf)(3) and chiral bis-pyridino-18-crown-6 1. In the asymmetric aldol reaction using rare earth metal triflates (RE(OTf)(3)) and 1, slight changes in the ionic diameters of the metal cations greatly affected the diastereo- and enantioselectivities of the products. The substituents (MeO, Br) at the 4-position of the pyridine rings of the crown ether did not significantly affect the selectivities in the asymmetric aldol reaction, although they affected the binding ability of the crown ether with RE cations and the catalytic activity of Pr(OTf)(3)-crown ether complexes. From X-ray structures of RE(NO(3))(3)-crown ether complexes, it was found that they had similar structures regardless of the RE cations and the crown ethers used. Accordingly, the binding ability of the crown ether with the RE cation and the catalytic activity of the complex are important for attaining high selectivity in the asymmetric aldol reaction. Various aromatic and alpha,beta-unsaturated aldehydes and silyl enol ethers derived from ketones and a thioester can be employed in the catalytic asymmetric aldol reactions using Pr(OTf)(3) and 1, to provide the aldol adducts in good to high yields and stereoselectivities. In the case using the silyl enol ether derived from the thioester, 2,6-di-tert-butylpyridine significantly improved the yields of the aldol adducts.  相似文献   

5.
tert-Butyldimethylsilyl (TBDMS) ethers of primary, secondary, and tertiary alcohols and phenolic TBDMS ethers are desilylated to their corresponding alcohols and phenols, respectively, in DMSO, at 80 degrees C, in 68-94% yield in the presence of 0.2-0.4 equiv of P(MeNCH2CH2)3N. Using P(i-PrNCH2-CH2)3N as the catalyst, 85-97% yields of desilylated alcohols were obtained from TBDMS ethers of 1-octanol, 2-phenoxyethanol, and racemic alpha-phenyl ethanol. These are the first examples of desilylations of silyl ethers catalyzed by nonionic bases. Both catalysts were much less effective for the desilylation of tert-butyldiphenylsilyl (TBDPS) ethers (22-45% yield) under the same conditions as used for TBDMS ethers. Possible pathways involving nucleophilic attack of the anion of the solvent molecule (generated by the catalyst) at the Si-O bond of silyl ether or a prior activation of the silyl ether by the catalyst via a P-Si interaction followed by nucleophilic attack of the solvent anion are proposed on the basis of 1H and 31P NMR experimental data.  相似文献   

6.
Rates and activation parameters for the Ce(4+)-mediated oxidation of a beta-keto ester, a beta-diketone, and a beta-keto silyl enol ether were determined in acetonitrile. In the case of the dicarbonyls, the enol content of the substrate impacts the rate of oxidation by Ce(4+), predominantly through contributions from DeltaH(). For the silyl enol ether, the transition state for oxidation by Ce(4+) is substantially more ordered than it is for the beta-keto ester or the beta-diketone.  相似文献   

7.
Copper(II) acetate catalyzes the coupling of pinacol vinylboronates with silanols producing enol silyl ethers. This represents a novel enol silyl ether synthesis via formation of the C-O bond instead of the conventional Si-O bond. This also constitutes the first transition-metal-catalyzed oxidative cross-coupling with silanols.  相似文献   

8.
Highly enantioselective Michael addition of silyl nitronates to alpha,beta-unsaturated aldehydes has been accomplished by the utilization of designer N-spiro C2-symmetric chiral quaternary ammonium bifluoride 1 as an efficient catalyst, providing direct access to both optically active gamma-nitro aldehydes, a very useful precursor to various complex organic molecules including aminocarbonyls, and their enol silyl ethers, a Mukaiyama donor of potential synthetic utility for further selective transformations. For instance, the reaction of trimethylsilyl nitronate 2 (R1 = Me) with trans-cinnamaldehyde (R2 = Ph, R3 = H) in toluene in the presence of (R,R)-1 (2 mol %) proceeded smoothly at -78 degrees C to give the desired enol silyl ether 3 (R1 = Me, R2 = Ph, R3 = H) in 90% isolated yield (anti/syn = 83:17) with 97% ee (anti isomer), and simple treatment of 3 thus obtained with 1 N HCl in THF at 0 degrees C afforded the corresponding gamma-nitro aldehyde 4 quantitatively without loss of diastereo- and enantioselectivity.  相似文献   

9.
A reaction of gamma-silyl allylic alcohol and its ether with ozone provides synthetically versatile alpha-formyl silyl peroxide in good yield without normal fission of carbon-carbon double bond. Thus, the provided silyl peroxide serves as a good precursor for the stereochemically defined triol derivative via alkylation and reduction of peroxide moiety.  相似文献   

10.
The bis[dimethyl(phenyl)silyl]cuprate reagent introduces a silyl group to the beta-position of three alpha,beta-unsaturated esters: methyl Z-4-dimethyl(phenyl)silylpent-2-enoate 11, and methyl Z- and E-(1'-dimethylphenylsilylbenzyl)but-2-enoates 14 and 15, diastereoselectively in the unexpected sense, syn to the silyl group in the conformation in which the hydrogen atom is 'inside'. The selectivity is low (58:42) in the first case 11, where the nucleophilic attack is adjacent to the stereogenic centre carrying the silyl group, and moderate (72:28) for both Z- and E-alpha,beta-unsaturated esters 14 and 15, where the nucleophilic attack is at the other end of the double bond from the stereogenic centre. It is conceivable that nucleophilic attack actually takes place in a conformation in which the donor substituent, the silicon-carbon bond, is out of conjugation with the double bond.  相似文献   

11.
Catalytic asymmetric aldol reactions in aqueous media have been developed using chiral zinc complex. The aldol products have been obtained in high yields, high diastereocontrol, and good level of enantioselectivity. Various aromatic and alpha,beta-unsaturated aldehydes and silyl enol ethers derived from ketones can be employed in this reaction to provide the aldol adducts in good to high yield. The elaborated catalytic system has been found as selective for aliphatic aldehydes as well.  相似文献   

12.
Ultraviolet photolysis of stoichiometric amounts of methyl oleate and Fe(CO)(5) in hexanes solvent at 0 degrees C gives Fe(CO)(3)(eta(4)-alpha,beta-ester) in which the alpha,beta-unsaturated ester isomer of methyl oleate is stabilized by eta(4)-oxadiene pi coordination of the olefin and ester carbonyl groups to the Fe(CO)(3) unit. Treatment of the Fe(CO)(3)(eta(4)-alpha,beta-ester) with pyridine or CO liberates the free alpha,beta-ester, methyl octadec-trans-2-enoate, in 70% yield. The Fe(CO)(3) unit both catalyzes the olefin isomerization and stabilizes the alpha,beta-unsaturated ester, which results in the formation of the alpha,beta-ester in a yield far above that (3.5%) observed for simple catalyzed methyl oleate isomerization. The much smaller olefin esters, methyl 3-butenoate and ethyl 4-methyl-4-pentenoate, are isomerized under the same conditions to their alpha,beta-unsaturated esters in 94 and 90% yields, respectively. The effects of reaction conditions on the yield, the use of Fe(CO)(3)(cis-cyclooctene)(2) as a nonphotolytic catalyst, and the mechanism of this useful synthetic process are discussed.  相似文献   

13.
The E- and Z-silyl enol ethers 4 derived from allyl 3-R-3-dimethyl(phenyl)silylpropanoate (R = Me, Pr(i) and Ph) and the Z-silyl enol ethers 7 derived from 4-R-4-dimethyl(phenyl)silylbut-2-enyl acetate (R = Me and Pr(i)) undergo Ireland-Claisen rearrangements largely in the same stereochemical sense, with C-C bond formation taking place anti to the silyl group in the conformations 22, 23 and 24 in which the hydrogen atom on the stereogenic centre is inside, more or less eclipsing the double bond. The E-silyl enol ether E-7a derived from 4-methyl-4-dimethyl(phenyl)silylbut-2-enyl acetate shows low diastereoselectivity in the alternative sense, probably because C-C bond formation takes place anti to the silyl group in the conformation 26 with the methyl group inside, but the silyl enol ether E-7b derived from 4-isopropyl-4-dimethyl(phenyl)silylbut-2-enyl acetate shows low diastereoselectivity in the normal sense. The E- and Z-silyl enol ethers 33 derived from cis-crotyl 3-phenyl-3-dimethyl(phenyl)silylpropanoate and the E-silyl enol ether 39 derived from trans-crotyl 3-phenyl-3-dimethyl(phenyl)silylpropanoate undergo Ireland-Claisen rearrangements largely in the same stereochemical sense as their allyl counterparts, but with moderately high levels of diastereocontrol in setting up the third stereogenic centre following from chair-like transition structures.  相似文献   

14.
[reaction: see text] On treatment of 5-siloxyhexa-1,2,5-trienes with a catalytic amount of W(CO)(6) under photoirradiation, formal Cope rearrangement proceeded to give 2-siloxyhex-1-en-5-ynes in good yield. The electrophilic activation of the allenyl moiety by W(CO)(5) triggers the intramolecular attack of the silyl enol ether in a 6-endo manner to produce a cyclohexenyl tungsten species. Carbon-carbon bond cleavage occurs by electron donation from the anionic W(CO)(5) into the silyloxonium moiety to afford the products with regeneration of the W(CO)(5)(L).  相似文献   

15.
Miura T  Kiyota K  Kusama H  Lee K  Kim H  Kim S  Lee PH  Iwasawa N 《Organic letters》2003,5(10):1725-1728
[reaction: see text] Indium-mediated allenylation of alpha,beta-unsaturated ketones in the presence of tert-butyldimethylsilyl triflate and dimethyl sulfide gives 6-siloxy-1,2,5-trienes, which undergo W(CO)(5)(L)-catalyzed 5-endo cyclization to give the corresponding cyclopentene derivatives in good yield. Furthermore, this novel W(CO)(5)(L)-catalyzed cyclization of allenyl silyl enol ethers proceeds in a 6-endo manner when 5-siloxy-1,2,5-trienes are employed as a substrate. In these reactions, effective electrophilic activation of allenyl compounds for attack by silyl enol ethers is achieved using a catalytic amount of W(CO)(6).  相似文献   

16.
The use of dirhodium(II) catalysts in the 1,4-hydrosilylation of alpha,beta-unsaturated ketones and aldehydes was explored. Dirhodium(II) tetrakis(perfluorobutyrate), Rh2(pfb)4, proved to be the catalyst of choice for this process, providing the corresponding silyl enol ethers in high yields.  相似文献   

17.
tert-Butyldiphenylsilylcopper reacts with allene to give an allylsilane-vinylcopper intermediate which upon treatment with alpha,beta-unsaturated ketones leads to allylsilane containing ketones resulting from conjugate addition. These oxoallylsilanes bearing the bulky tert-butyldiphenylsilyl group undergo highly selective intramolecular cyclizations when treated with Lewis acid affording unsaturated cyclopentanols. Two reactivity patterns are observed: allylsilane terminated cyclization involving elimination of silicon or an ene reaction without losing the silyl group. The pathway depends on the ability of a hydrogen beta to the carbonyl to be removed in an ene-type process. Alpha,beta-unsaturated acid chlorides lead to silylated cyclopentenones.  相似文献   

18.
[reaction: see text] 2,3,5-Trisubstituted pyrroles were prepared in a regioselective manner using the double nucleophilic addition of alpha,alpha-dialkoxy ketene silyl acetals and ketene sily thioacetals or trimethylsilyl cyanide to alpha,beta-unsaturated imines followed by acid-promoted cyclization and oxidation with DDQ. Using this methodology an imidazole glycerol phosphate dehydratase inhibitor (IGPDI) possessing a monopyrrole aldehyde moiety was synthesized.  相似文献   

19.
Highly colored (red) solutions of various enol silyl ethers and tetranitromethane (TNM) are readily bleached to afford good yields of alpha-nitro ketones in the dark at room temperature or below. Spectral analysis show the red colors to be associated with the intermolecular 1:1 electron donor-acceptor (EDA) complexes between the enol silyl ether and TNM. The formation of similar vividly colored EDA complexes with other electron acceptors (such as chloranil, tetracyanobenzene, tetracyanoquinodimethane, etc.) readily establish enol silyl ethers to be excellent electron donors. The deliberate irradiation of the diagnostic (red) charge-transfer absorption bands of the EDA complexes of enol silyl ethers and TNM at -40 degrees C affords directly the same alpha-nitro ketones, under conditions in which the thermal reaction is too slow to compete. A common pathway is discussed in which the electron transfer from the enol silyl ether (ESE) to TNM results in the radical ion triad [ESE(*)(+), NO(2)(*), C(NO(2))(3)(-)]. A subsequent fast homolytic coupling of the cation radical of the enol silyl ether with NO(2)(*)() leads to the alpha-nitro ketones. The use of time-resolved spectroscopy and the disparate behavior of the isomeric enol silyl ethers of alpha- and beta-tetralones as well as of 2-methylcyclohexanone strongly support cation radicals (ESE(*)(+)) as the critical intermediate in thermal and photoinduced electron-transfer as described in Schemes 1 and 2, respectively.  相似文献   

20.
1,4‐Addition of bis(iodozincio)methane to simple α,β‐unsaturated ketones does not proceed well; the reaction is slightly endothermic according to DFT calculations. In the presence of chlorotrimethylsilane, the reaction proceeded efficiently to afford a silyl enol ether of β‐zinciomethyl ketone. The C? Zn bond of the silyl enol ether could be used in a cross‐coupling reaction to form another C? C bond in a one‐pot reaction. In contrast, 1,4‐addition of the dizinc reagent to enones carrying an acyloxy group proceeded very efficiently without any additive. In this case, the product was a 1,3‐diketone, which was generated in a novel tandem reaction. A theoretical/computational study indicates that the whole reaction pathway is exothermic, and that two zinc atoms of bis(iodozincio)methane accelerate each step cooperatively as effective Lewis acids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号