首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The lattice dynamics of a single crystal of CuGaS2, grown by iodine transport technique, have been studied by using far IR absorption spectroscopy. All the absorption maxima caused by the phonon excitation are compared with the lattice vibrational modes obtained by Raman spectroscopy and by IR reflection techniques. An absorption maximum located at 175 cm?1 cannot be explained with the help of phonon excitation; however this peak can be attributed to the defect frequency originating from the replacement of gallium atom by sulphur in the v17 mode of vibration. The frequency of this defect-induced vibrational mode is calculated by taking a modified molecular model approach, and is found to be 166.9 cm?1, which is in reasonably good agreement with the experimentally observed value of 175 cm?1.  相似文献   

2.
In the Raman spectra of intermediate valent TmSe1?xTex the same anomaly within the acoustical phonon band at 60 cm?1 is found as in TmxSe. The connection of this anomaly with the valence mixing is confirmed. In a one-dimensional model calculation it is shown that a renormalized LA dispersion curve can produce the observed anomalous peak in the phonon DOS. As an alternative interpretation the possibility of a low energy electronic excitation at 60 cm?1 is discussed.  相似文献   

3.
Polarized Raman spectra were obtained in the quasi-one-dimensional conductor (TaSe4)2I above and below the charge-density-wave (CDW) transition temperature (Tc=263 K). The Raman intensities of many peaks become intenser and two of the phonon peaks shift to higher frequency with decreasing temperature. Moreover a new broad peak at about 90 cm?1 and a new peak around 166 cm?1 appear in the low-temperature phase. The polarization characteristic shows that the former is assigned to totally symmetric mode. The damping constant of the phonon at 90 cm?1 increases markedly with increasing temperature. The frequency shifts to higher frequency as the temperature increases and the coupling coefficient is approximately proportional to (Tc?T)12. This peak becomes Raman active owing to the CDW phase transition. The temperature dependence of the damping constant and the frequency shift may have a relation to the dynamical properties of the CDW phase transition.  相似文献   

4.
Raman spectra of bismuth ferrite (BiFeO3) over the frequency range of 100-1500 cm−1 have been systematically investigated with different excitation wavelengths. The intensities of the two-phonon modes are enhanced obviously under the excitation of 532 nm wavelength. This is attributed to the resonant behavior when incident laser energy closes to the intrinsic bandgap of BiFeO3. The Raman spectra of BiFeO3 excited at 532 nm were measured over the temperature range from 77 to 678 K. Besides the abnormal changes of the peak position and the linewidth of the A1 mode at 139 cm−1, the prominent frequency shift, the line broadening and the decrease of the intensity for the two-phonon mode at 1250 cm−1 were observed as the temperature increased to Néel temperature (TN). All these results indicate the existence of strong spin-phonon coupling in BiFeO3.  相似文献   

5.
The nonpolar optic phonons of E2 symmetry in CdS are shown to exhibit a pronounced decrease in Raman cross-section at certain excitation energies. For the E2 phonon branch at 43 cm−1 the minimum cross-section occurs for laser excitation ∼0.18 eV below the band gap, and cross-section vs. excitation energy near this antiresonant minimum can be described by an equation of the form used by Ralston et al. for transverse polar phonon cross-sections. For the E2 mode at 256 cm−1 the antiresonance occurs at wavelengths longer than 6328 Å.  相似文献   

6.
The excitation profiles of Raman bands of pyridine (1008 cm?1), triphenylphosphine (997 cm?1), [CN]? (2114 cm?1), and [Ru3O2(NH3)14]6+ (ruthenium red, 275 cm?1) adsorbed at roughened silver-aqueous interfaces have been measured over the range 458–799 nm. Apart from [CN]? for which experimental limitations prevented measurements with excitation in the far red, each of the adsorbates shows a pronounced excitation profile maximum for excitation in the range 590–750 nm. Measurements on triphenylphosphine at a silver-aqueous interface and on the same silver surface in gaseous nitrogen detected some difference in the excitation profiles due to change of medium. These results are discussed in relation to various theories of enhanced Raman scattering by adsorbates at metal surfaces.  相似文献   

7.
This paper reports on the use of phonon spectra obtained with laser Raman spectroscopy for the uncertainty concerned to the optical phonon modes in pure and composite ZnO1?x (Cr2O3) x . Particularly, in previous literature, the two modes at 514 and 640 cm?1 have been assigned to ZnO are not found for pure ZnO in our present study. The systems investigated for the typical behavior of phonon modes with 442 nm as excitation wavelength are the representative semiconductor (ZnO)1?x (Cr2O3) x (x = 0, 5, 10 and 15 %). Room temperature Raman spectroscopy has been demonstrated polycrystalline wurtzite structure of ZnO with no structural transition from wurtzite to cubic with Cr2O3. The incorporation of Cr3+ at most likely on the Zn sub-lattice sites is confirmed. The uncertainty of complex phonon bands is explained by disorder-activated Raman scattering due to the relaxation of Raman selection rules produced by the breakdown of translational symmetry of the crystal lattice and dopant material. The energy of the E 2 (high) peak located at energy 53.90 meV (435 cm?1) due to phonon–phonon anharmonic interaction increases to 54.55 meV (441 cm?1). A clear picture of the dopant-induced phonon modes along with the B 1 silent mode of ZnO is presented and has been explained explicitly. Moreover, anharmonic line width and effect of dislocation density on these phonon modes have also been illustrated for the system. The study will have a significant impact on the application where thermal conductivity and electrical properties of the materials are more pronounced.  相似文献   

8.
The vibrational Raman spectrum of 16O2 has been recorded with high resolution (0.05 cm?1 for the Q branch). The expansion of the Hamiltonian as a sum of irreducible tensors of the O(3) group allowed us to obtain easily the expressions for the energy levels, taking into account the off-diagonal matrix elements. From the analysis of the spectrum the excited state constants have been calculated; in particular the rotational constants obtained are: B1 = 1.421884 ± 0.000013 cm?1 and D1 = (?4.864 ± 0.014)10?6 cm?1.  相似文献   

9.
The phase transition of the linear chain compound (NbSe4)3I was studied by Raman scattering. At 78 K three new peaks were observed at 73 cm?1, 205 cm?1 and 261 cm?1. The totally symmetric Raman peak at 73 cm?1 shows anomalous temperature dependence. The frequency decreases with increasing temperature, and at high temperatures an anticrossing occurs with another peak observed at about 58 cm?1. The Raman intensity decreases and the linewidth broadens remarkably as the temperature increases. These properties allow us to assign this peak to a soft phonon. This fact indicates clearly the existence of a structural phase transition of a displacive type below room temperature.  相似文献   

10.
Peaks in the FeF3 phonon Raman spectrum are assigned to the A1g(312 cm-1) and Eg(105, 187, 450 cm-1) representations of the D63d group. Anomalous temperature dependence of the frequency, intensity and line width of the 187 cm-1 line has been observed.  相似文献   

11.
Raman scattering experiments on K2Pt(CN)4Br0.3 · 3H2O are reported between 5 and 300 K as a function of temperature. A line of A1 symmetry detected at 44 cm?1 shows interesting temperature dependent properties. It is concluded from a comparison of the frequency, symmetry, and scattering intensity of this line with theoretical predictions that the excitation concerned represents the amplitude mode of the charge density wave (the line observed in infrared absorption being the phase mode). No Peierls transition is observed, but the results are consistent with a Peierls distortion present at all temperatures. The findings are correlated with inelastic neutron scattering and infrared studies. Finally, the CN stretching modes at 2189 and 2173 cm?1 and the water mode at 3490 cm?1 are studied as a function of temperature.  相似文献   

12.
A Raman scattering investigation of the pressure-induced phase transition in tetragonal thallium azide (TlN3) is reported. The most interesting features of the Raman spectrum of TlN3 are the anti-resonant line-shapes of two Eg symmetry phonons at 35 and 50 cm?1 superimposed on a quasi-elastic wing. The scattering data is shown to be consistent with a model in which the two phonons interact via an imaginary coupling term. The phonon at 35 cm?1 (assigned to a translational shear mode of the Tl+ sublattice) softens with increasing pressure and increases in linewidth as P approaches P0 (=8 kbar) from below. At the same time, the quasi-elastic scattering component (associated with large amplitude N3? librational fluctuations) becomes less damped. A displacive structural transition from tetragonal to monoclinic is indicated by the eigenvector of the soft phonon.  相似文献   

13.
The excitation spectrum of the Mn2+ emission has been measured in CaF2 and CdF2. The observed excitation bands have been assigned to transitions of the Mn2+ ions in a cubic environment. The calculated values for the crystal field (Dq) and Racah parameters (B,C) are Dq = 425 cm-1 for CaF2, Dq = 500 cm-1 for CdF2 and, B = 770 cm-1 and C / B = 4.48 for both compounds. The lifetime of the fluorescent level 4T1g(4G) has been measured in both compounds at different temperatures in the range from 10 to 500 K. The lifetime thermal dependence is explained taking into account different mechanisms (purely radiative, phonon assisted, and radiationless transitions) for the decay of excited Mn2+ ions.  相似文献   

14.
The ν4 infrared and Raman bands of CH3Cl were analyzed simultaneously. A direct fit yielded a complete set of constants for CH335Cl, including A0 = 5.20530 ± 0.00010 cm?1 and DK = (8.85 ± 0.13) × 10?5cm?1. For CH337Cl an incomplete set of constants was obtained from the infrared band, and A0 = 5.2182 ± 0.0010 cm?1 was estimated by curve fitting of the Raman spectrum. The resulting equilibrium structure is r(CH) = 1.0854 ± 0.0005 A?, r(CCl) = 1.7760 ± 0.0003 A?, and <(HCH) = 110°.35 ± 0°.05.  相似文献   

15.
Laser induced fluorescence spectra are reported for samples of natural selenium and of the separated 78Se and 80Se isotopes in Ar and Kr matrices. The B(0u+) → X(0g+) and B(1u) → X(1g) systems of Se2, already known in the gas, are observed by both single photon and biphotonic excitation considerably red-shifted in the matrices. The A(0u+) → X(0g+) emission of Se2, not observed in the vapor, appears in the matrices with its origin near 15 100 cm?1. Another system with ν00 = 24 429 cm?1 and ωe = 538 cm?1 is thought to belong most probably to some polyatomic Sen molecule.  相似文献   

16.
For the sharp band located at 31,200 cm?1 in the three dimensional antiferromagnetic KNiF3, the dependence of the oscillator strength on the Ni ion concentration and the stress-induced linear dichroic spectrum are studied. The polarization dependence of the corresponding band in the two dimensional antiferromagnetic K2NiF4 is also measured. The weak structure located at 30,780 cm?1 is assigned as two-exciton transition, and the band at 31,200 cmt?1 as a two-exciton transition accompanied with a T1u phonon.  相似文献   

17.
发现不同波长激光激发下C6H12的受激拉曼散射模式竞争现象. 在不同波长的激光激发下,不同拉曼模式的Stokes光占优势. 短波长(404,532nm)激光激发时小频移模式ω1(802cm-1)为弱增益模式,大频移模式ω2(2852—3038cm-1)为强增益模, 主要产生ω2模式的Stokes光. 长波长(80 关键词: 模式竞争 6H12')" href="#">C6H12 受激拉曼散射  相似文献   

18.
A detailed study of the polarized Raman scattering of wurtzite GaN films is presented, focusing on the nature of the band centered at 740 cm−1 observed in the X(Z, Z)X configuration. The origin of this band is ascribed to the mixed contribution of the A1 and E1 longitudinal phonon modes coupled with the free carrier excitation. The spectral profile of the 740 cm−1 Raman band has been successfully reconstructed through a linear combination of the A1-E1 longitudinal phonon plasmon-coupled modes, leading to a free carrier concentration in good agreement with Hall effect measurements.  相似文献   

19.
Matrix reactions of alkali metal atoms with S2Cl2 and photolyzed H2S samples have been examined by laser excitation at 457.9 nm. The strong photoluminescence spectrum from 12 300 to 18 300 cm?1 exhibited vibrational spacings near 550 cm?1. Observation of the same ZPL spectrum with two different precursors identified the carrier as Na+S2?. The vibrational numbering was made possible by the Na+32S34S? species in natural abundance and from a 33% 34S-enriched sample of S2Cl2. The spectroscopic constants ν00 = 19 990 ± 10 cm?, ω0″ = 586 ± 2 cm?1 and ω0x0″ = 2.8 ± 0.2 cm?1 are in excellent agreement with those reported for S2? in alkali halide crystals at low temperature.  相似文献   

20.
The polarized Raman scattering from small single crystals of Cu2HgI4 provided assignments for the more prominent Raman features to specific irreducible representations. The E symmetry assignment, mass dependence, and pressure dependence of the 36 cm?1 band in Cu2HgI4 and 24 cm?1 band in Ag2HgI4 indicate that these features approximate the attempt frequency for ion hopping. The unusually high pre-exponential factor in the Arrhenius expression for ion hopping is discussed in light of the observed attempt frequency; we conclude that despite the high activation energy the conduction mechanism is similar to other heavy-metal solid electrolytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号