首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A numerical method of reconstruction of an object image using an X‐ray dynamical diffraction Fraunhofer hologram is presented. Analytical approximation methods and numerical methods of iteration are discussed. An example of a reconstruction of an image of a cylindrical beryllium wire is considered. The results of analytical approximation and zero‐order iteration coincide with exact values of the amplitude complex transmission coefficient of the object as predicted by the resolution limit of the scheme, except near the edges of the object. Calculations of the first‐ and second‐order iterations improve the result at the edges of the object. This method can be applied for determination of the complex amplitude transmission coefficient of amplitude as well as phase objects. It can be used in X‐ray microscopy.  相似文献   

2.
Taking into account background correction and using Fourier analysis, a numerical method of an object image correction using an X‐ray dynamical diffraction Fraunhofer hologram is presented. An example of the image correction of a cylindrical beryllium wire is considered. A background correction of second‐order iteration leads to an almost precise reconstruction of the real part of the amplitude transmission coefficient and improves the imaginary part compared with that without a background correction. Using Fourier analysis of the reconstructed transmission coefficient, non‐physical oscillations can be avoided. This method can be applied for the determination of the complex amplitude transmission coefficient of amplitude as well as phase objects, and can be used in X‐ray microscopy.  相似文献   

3.
X‐ray microscopy is capable of imaging particles in the nanometer size range directly with sub‐micrometer spatial resolution and can be combined with high spectral resolution for spectromicroscopy studies. Two types of microscopes are common in X‐ray microscopy: the transmission X‐ray microscope and the scanning transmission X‐ray microscope; their set‐ups are explained in this paper. While the former takes high‐resolution images from an object with exposure times of seconds or faster, the latter is very well suited as an analytical instrument for spectromicroscopy. The morphology of clusters or particles from soil and sediment samples has been visualized using a transmission X‐ray microscope. Images are shown from a cryo‐tomography experiment based on X‐ray microscopy images to obtain information about the three‐dimensional structure of clusters of humic substances. The analysis of a stack of images taken with a scanning transmission X‐ray microscope to combine morphology and chemistry within a soil sample is shown. X‐ray fluorescence is a method ideally applicable to the study of elemental distributions and binding states of elements even on a trace level using X‐ray energies above 1 keV.  相似文献   

4.
The ESRF synchrotron beamline ID22, dedicated to hard X‐ray microanalysis and consisting of the combination of X‐ray fluorescence, X‐ray absorption spectroscopy, diffraction and 2D/3D X‐ray imaging techniques, is one of the most versatile instruments in hard X‐ray microscopy science. This paper describes the present beamline characteristics, recent technical developments, as well as a few scientific examples from recent years of the beamline operation. The upgrade plans to adapt the beamline to the growing needs of the user community are briefly discussed.  相似文献   

5.
A new prism‐array lens for high‐energy X‐ray focusing has been constructed using an array of different prisms obtained from different parabolic structures by removal of passive parts of material leading to a multiple of 2π phase variation. Under the thin‐lens approximation the phase changes caused by this lens for a plane wave are exactly the same as those caused by a parabolic lens without any additional corrections when they have the same focal length, which will provide good focusing; at the same time, the total transmission and effective aperture of this lens are both larger than those of a compound kinoform lens with the same focal length, geometrical aperture and feature size. This geometry can have a large aperture that is not limited by the feature size of the lens. Prototype nickel lenses with an aperture of 1.77 mm and focal length of 3 m were fabricated by LIGA technology, and were tested using CCD camera and knife‐edge scan method at the X‐ray Imaging and Biomedical Application Beamline BL13W1 at Shanghai Synchrotron Radiation Facility, and provided a focal width of 7.7 µm and a photon flux gain of 14 at an X‐ray energy of 50 keV.  相似文献   

6.
The layout and the characteristics of the hard X‐ray beamline BL10 at the superconducting asymmetric wiggler at the 1.5 GeV Dortmund Electron Accelerator DELTA are described. This beamline is equipped with a Si(111) channel‐cut monochromator and is dedicated to X‐ray studies in the spectral range from ~4 keV to ~16 keV photon energy. There are two different endstations available. While X‐ray absorption studies in different detection modes (transmission, fluorescence, reflectivity) can be performed on a designated table, a six‐axis kappa diffractometer is installed for X‐ray scattering and reflectivity experiments. Different detector set‐ups are integrated into the beamline control software, i.e. gas‐filled ionization chambers, different photodiodes, as well as a Pilatus 2D‐detector are permanently available. The performance of the beamline is illustrated by high‐quality X‐ray absorption spectra from several reference compounds. First applications include temperature‐dependent EXAFS experiments from liquid‐nitrogen temperature in a bath cryostat up to ~660 K by using a dedicated furnace. Besides transmission measurements, fluorescence detection for dilute sample systems as well as surface‐sensitive reflection‐mode experiments are presented.  相似文献   

7.
Using the scanning transmission X‐ray microscope at BESSY II, colloidal structures from a Chernozem soil have been studied with a spatial resolution around 60 nm and a spectral resolution of 1700 at the K‐absorption edge of carbon. Elemental mapping has been used to determine the distribution of organic matter within the colloidal structures. Spectra have been extracted from image stacks to obtain information about the chemical state. For the analysis of the latter, principal component analysis and cluster analysis have been applied. It was possible, for example, to discriminate clay particles against organic components.  相似文献   

8.
An X‐ray dynamical diffraction Fraunhofer holographic scheme is proposed. Theoretically it is shown that the reconstruction of the object image by visible light is possible. The spatial and temporal coherence requirements of the incident X‐ray beam are considered. As an example, the hologram recording as well as the reconstruction by visible light of an absolutely absorbing wire are discussed.  相似文献   

9.
The X‐ray PIV (particle image velocimetry) technique has been used as a non‐invasive measurement modality to investigate the haemodynamic features of blood flow. However, the extraction of two‐dimensional velocity field data from the three‐dimensional volumetric information contained in X‐ray images is technically unclear. In this study, a new two‐dimensional velocity field extraction technique is proposed to overcome technological limitations. To resolve the problem of finding a correction coefficient, the velocity field information obtained by X‐ray PIV and micro‐PIV techniques for disturbed flow in a concentric stenosis with 50% severity was quantitatively compared. Micro‐PIV experiments were conducted for single‐plane and summation images, which provide similar positional information of particles as X‐ray images. The correction coefficient was obtained by establishing the relationship between velocity data obtained from summation images (VS) and centre‐plane images (VC). The velocity differences between VS and VC along the vertical and horizontal directions were quantitatively analysed as a function of the geometric angle of the test model for applying the present two‐dimensional velocity field extraction technique to a conduit of arbitrary geometry. Finally, the two‐dimensional velocity field information at arbitrary positions could be successfully extracted from X‐ray images by using the correction coefficient and several velocity parameters derived from VS.  相似文献   

10.
The current status of the TwinMic beamline at Elettra synchrotron light source, that hosts the European twin X‐ray microscopy station, is reported. The X‐ray source, provided by a short hybrid undulator with source size and divergence intermediate between bending magnets and conventional undulators, is energy‐tailored using a collimated plane‐grating monochromator. The TwinMic spectromicroscopy experimental station combines scanning and full‐field imaging in a single instrument, with contrast modes such as absorption, differential phase, interference and darkfield. The implementation of coherent diffractive imaging modalities and ptychography is ongoing. Typically, scanning transmission X‐ray microscopy images are simultaneously collected in transmission and differential phase contrast and can be complemented by chemical and elemental analysis using across‐absorption‐edge imaging, X‐ray absorption near‐edge structure or low‐energy X‐ray fluorescence. The lateral resolutions depend on the particular imaging and contrast mode chosen. The TwinMic range of applications covers diverse research fields such as biology, biochemistry, medicine, pharmacology, environment, geochemistry, food, agriculture and materials science. They will be illustrated in the paper with representative results.  相似文献   

11.
The X‐ray lithography beamline on Indus‐2 is now operational, with two modes of operation. With a pair of X‐ray mirrors it is possible to tune the energy spectrum between 1 and 20 keV with a controlled spectral bandwidth. In its `no optics' mode, hard X‐rays up to 40 keV are available. Features and performance of the beamline are presented along with some example structures. Structures fabricated include honeycomb structures in PMMA using a stainless steel stencil mask and a compound refractive X‐ray lens using a polyimide–gold mask in SU‐8.  相似文献   

12.
Time and energy integrated measurements of the 3‐D angular distribution of X‐rays emission within the chamber of a 4 kJ Mather‐type plasma focus is investigated employing four different anode shapes and using nitrogen as the filling gas by the TLD‐100 thermoluminescence dosimeters. The distributions of X‐ray radiation in the energy range of 5 keV to several hundred keV were bimodal for all of the anode tips, peaked approximately at ±15°. The intensity of X‐rays decreased abruptly along the central axis of the device where the quasi cylindrical plasma pinch was formed. High intensity of X‐ray was observed in the case of a tapered ?at‐end anode, whereas less was obtained with the cylindrical hollow‐end anode. The maximum nitrogen X‐rays were for the tapered flat‐end anode at 4.5 mbar and 13 kV. (© 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

13.
Beamline 2.1 (XM‐2) is a transmission soft X‐ray microscope in sector 2 of the Advanced Light Source at Lawrence Berkeley National Laboratory. XM‐2 was designed, built and is now operated by the National Center for X‐ray Tomography as a National Institutes of Health Biomedical Technology Research Resource. XM‐2 is equipped with a cryogenic rotation stage to enable tomographic data collection from cryo‐preserved cells, including large mammalian cells. During data collection the specimen is illuminated with `water window' X‐rays (284–543 eV). Illuminating photons are attenuated an order of magnitude more strongly by biomolecules than by water. Consequently, differences in molecular composition generate quantitative contrast in images of the specimen. Soft X‐ray tomography is an information‐rich three‐dimensional imaging method that can be applied either as a standalone technique or as a component modality in correlative imaging studies.  相似文献   

14.
This paper reports X‐ray microtomographic visualization of the microorganism Escherichia coli overexpressing a metalloprotein ferritin. The three‐dimensional distribution of linear absorption coefficients determined using a synchrotron radiation microtomograph with a simple projection geometry revealed that the X‐ray absorption was homogeneously distributed, suggesting that every E. coli cell was labeled with the ferritin. The ferritin‐expressing E. coli exhibited linear absorption coefficients comparable with those of phosphotungstic acid stained cells. The submicrometer structure of the ferritin‐expressing E. coli cells was visualized by Zernike phase contrast using an imaging microtomograph equipped with a Fresnel zone plate. The obtained images revealed curved columnar or bunching oval structures corresponding to the E. coli cells. These results indicate that the metalloprotein overexpression facilitates X‐ray visualization of three‐dimensional cellular structures of biological objects.  相似文献   

15.
Here, soft X‐ray synchrotron radiation transmitted through microchannel plates is studied experimentally. Fine structures of reflection and XANES Si L‐edge spectra detected on the exit of silicon glass microcapillary structures under conditions of total X‐ray reflection are presented and analyzed. The phenomenon of the interaction of channeling radiation with unoccupied electronic states and propagation of X‐ray fluorescence excited in the microchannels is revealed. Investigations of the interaction of monochromatic radiation with the inner‐shell capillary surface and propagation of fluorescence radiation through hollow glass capillary waveguides contribute to the development of novel X‐ray focusing devices in the future.  相似文献   

16.
The applications of nuclear resonant scattering in laser‐heated diamond anvil cells have provided an important probe for the magnetic and vibrational properties of 57Fe‐bearing materials under high pressure and high temperature. Synchrotron X‐ray diffraction is one of the most powerful tools for studying phase stability and equation of state over a wide range of pressure and temperature conditions. Recently an experimental capability has been developed for simultaneous nuclear resonant scattering and X‐ray diffraction measurements using synchrotron radiation. Here the application of this method to determine the sound velocities of compressed Fe3C is shown. The X‐ray diffraction measurements allow detection of microscale impurities, phase transitions and chemical reactions upon compression or heating. They also provide information on sample pressure, grain size distribution and unit cell volume. By combining the Debye velocity extracted from the nuclear resonant inelastic X‐ray scattering measurements and the structure, density and elasticity data from the X‐ray diffraction measurements simultaneously obtained, more accurate sound velocity data can be derived. Our results on few‐crystal and powder samples indicate strong anisotropy in the sound velocities of Fe3C under ambient conditions.  相似文献   

17.
In order to preserve and restore the Imperial Gates from the Petrindu wooden church, Salaj County, Romania, (map location—latitude, longitude: 46.97, 23.19), the scientific investigation of the wooden support and painting materials (ground and pigments) was performed, employing Fourier‐transform infrared spectroscopy (FTIR), X‐ray fluorescence spectroscopy, and 3D scanning. FTIR spectroscopy offered information about the wooden degradation stage, whereas X‐ray fluorescence and FTIR spectroscopic methods were employed for structural painting materials characterization. The structural data can be correlated with the artistic, theological, and historical analysis of this religious patrimony object. After obtaining information about the wooden support and painting materials, the Imperial Gates were 3D digitized using state of the art laser scanning technology. The digital 3D model obtained was restored in a virtual environment and converted into an interactive 3D model that can be used for Romanian cultural heritage digital dissemination.  相似文献   

18.
X‐ray imaging is used to visualize the biofluid flow phenomena in a nondestructive manner. A technique currently used for quantitative visualization is X‐ray particle image velocimetry (PIV). Although this technique provides a high spatial resolution (less than 10 µm), significant hemodynamic parameters are difficult to obtain under actual physiological conditions because of the limited temporal resolution of the technique, which in turn is due to the relatively long exposure time (~10 ms) involved in X‐ray imaging. This study combines an image intensifier with a high‐speed camera to reduce exposure time, thereby improving temporal resolution. The image intensifier amplifies light flux by emitting secondary electrons in the micro‐channel plate. The increased incident light flux greatly reduces the exposure time (below 200 µs). The proposed X‐ray PIV system was applied to high‐speed blood flows in a tube, and the velocity field information was successfully obtained. The time‐resolved X‐ray PIV system can be employed to investigate blood flows at beamlines with insufficient X‐ray fluxes under specific physiological conditions. This method facilitates understanding of the basic hemodynamic characteristics and pathological mechanism of cardiovascular diseases.  相似文献   

19.
A scanning transmission X‐ray microscope is operational at the 10A beamline at the Pohang Light Source. The 10A beamline provides soft X‐rays in the photon energy range 100–2000 eV using an elliptically polarized undulator. The practically usable photon energy range of the scanning transmission X‐ray microscopy (STXM) setup is from ~150 to ~1600 eV. With a zone plate of 25 nm outermost zone width, the diffraction‐limited space resolution, ~30 nm, is achieved in the photon energy range up to ~850 eV. In transmission mode for thin samples, STXM provides the element, chemical state and magnetic moment specific distributions, based on absorption spectroscopy. A soft X‐ray fluorescence measurement setup has been implemented in order to provide the elemental distribution of thicker samples as well as chemical state information with a space resolution of ~50 nm. A ptychography setup has been implemented in order to improve the space resolution down to 10 nm. Hardware setups and application activities of the STXM are presented.  相似文献   

20.
A preparation method of arsenic‐containing white rice grains as calibration standards was developed for the X‐ray fluorescence (XRF) analysis of arsenic in rice grains. Calibration standards were prepared by adding 10 g of white rice grains (from Japan) to 100 ml methanol‐containing dimethylarsinic acid corresponding to 2–100 µg arsenic. The mixture was heated, dried at 150 °C, cooled to room temperature, and then stored in a silica gel desiccator. A total of 5.0 g of each calibration standard was packed into a polyethylene cup (32 mm internal diameter and 23 mm height) covered with a 6‐µm‐thick polypropylene film and then analyzed by wavelength‐dispersive XRF spectrometry. The calibration curve for arsenic obtained from the white rice grains containing arsenic showed good linearity over a concentration range of 0.21–5.00 mg kg?1 arsenic. The limit of detection of arsenic was 0.080 mg kg?1. To check the reliability of the XRF method, the concentrations of arsenic in six samples of grain cereals and two samples of flour were compared with those obtained by atomic absorption spectrometry after acid decomposition. The values obtained by both analytical methods showed good agreement. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号