首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An experimental study was performed on the combustion of lean-premixed spays in a counterflow. n-Decane was used as a liquid fuel with low volatility. The flame structure and stabilization were discussed based on the flame-spread mechanism of a droplet array with a low-volatility fuel. The spray flame consisted of a blue region and a yellow luminous region. The flame spread among droplets and group-flame formation through the droplet interaction were observed on the premixed spray side, while envelope flames were also observed on the opposing airflow side. The blue-flame region consisted of premixed flames propagating in the mixture layer around each droplet, the envelope diffusion flames around each droplet, the lower parts of the group diffusion flame surrounding each droplet cluster, and the envelope flame around droplets passing through the group flame. The flame was stabilized within a specific range of the mean droplet diameter via a balance between the droplet velocity and the flame-spread rate of the premixed spray.  相似文献   

2.

A simple model of a flame front propagating through a fuel-rich droplet–vapour–air mixture is presented in which the fuel droplets are assumed to evaporate in a sharp front ahead of the reaction front. By performing a linear stability analysis neutral stability boundaries are determined. It is shown that the presence of the spray of droplets in the fresh mixture can have a profound effect by causing cellularization of the flame front. Specifically, we demonstrate that under certain circumstances a spray flame can be cellular when its equivalent non-spray flame is completely stable. Furthermore, it is shown that even when the non-spray flame is itself cellular the equivalent spray flame will have a finer cellular structure. These theoretical predictions verify qualitatively for the first time independent experimental observations from the literature. It is thus shown that the primary effect of the spray on the stability of these flames is due to heat loss from the absorption of heat by the droplets for vaporization. The influence of the initial liquid fuel loading and the latent heat of vaporization on the critical wavenumber associated with cellularity provide further evidence of the responsibility of the heat loss mechanism for these spray-related phenomena. Finally, the cellularity of the spray flames with their attendant increase in flame front area suggest a plausible rationale for the experimentally observed burning velocity enhancement induced by the use of a spray of fuel droplets.  相似文献   

3.
Experimental evidence seems to indicate that the life of a laminar spherical flame front propagating through a fresh mixture of air and liquid fuel droplets can be roughly split into three stages: (1) ignition, (2) radial propagation with a smooth flame front and (3) propagation with flame front cellularization and/or pulsation. In this work, the second stage is analysed using the slowly varying flame approach, for a fuel rich flame. The droplets are presumed to vaporize in a sharp front ahead of the reaction front. Evolution equations for the flame and evaporation fronts are derived. For the former the combined effect of heat loss due to droplet vaporization and radiation plays a dominant explicit role. In addition, the structure of the evaporation front is deduced using asymptotics based on a large parameter associated with spray vaporization. Numerical calculations based on the analysis point to the way in which the spray modifies conditions for flame front extinction. Within the framework of the present simplified model the main relevant parameters turn out to be the initial liquid fuel load in the fresh mixture and/or the latent heat of vaporization of the fuel.  相似文献   

4.
The transient convective burning of n-octane droplets interacting within single-layer arrays in a hot gas flow perpendicular to the layer is studied numerically, with considerations of droplet surface regression, deceleration due to the drag of the droplets, internal liquid motion, variable properties, non-uniform liquid temperature and surface tension. Infinite periodic arrays, semi-infinite periodic arrays with one row of droplets (linear array) or two rows of droplets, and finite arrays with nine droplets with centers in a plane are investigated. All arrays are aligned orthogonal to the free stream direction. This paper compares the behavior of semi-infinite periodic arrays and finite arrays with the behavior of previously studied infinite periodic arrays. Furthermore, it identifies the critical values of the initial Damköhler number for bifurcations in flame behavior at various initial droplet spacing for all these arrays. The initial flame shape is either an envelope flame or a wake flame as determined by the initial Damköhler number, the array configuration and the initial droplet spacing. The critical initial Damköhler number separating initial wake flames from initial envelope flames decreases with increasing interaction amongst droplets at intermediate droplet spacing (when the number of rows in the array increases or the initial droplet spacing decreases for a specific number of rows in the array). In the transient process, an initial wake flame has a tendency to develop from a wake flame to an envelope flame, with the moment of wake-to-envelope transition advanced for the increasing interaction amongst droplets at intermediate droplet spacing. For the array with nine droplets with centers in a plane, the droplets at different types of positions have different critical initial Damköhler number and different wake-to-envelope transition time for initial wake flame.  相似文献   

5.
Premixed counterflow flames with thermally sensitive intermediate kinetics and radiation heat loss are analysed within the framework of large activation energy. Unlike previous studies considering one-step global reaction, two-step chemistry consisting of a chain branching reaction and a recombination reaction is considered here. The correlation between the flame front location and stretch rate is derived. Based on this correlation, the extinction limit and bifurcation characteristics of the strained premixed flame are studied, and the effects of fuel and radical Lewis numbers as well as radiation heat loss are examined. Different flame regimes and their extinction characteristics can be predicted by the present theory. It is found that fuel Lewis number affects the flame bifurcation qualitatively and quantitatively, whereas radical Lewis number only has a quantitative influence. Stretch rates at the stretch and radiation extinction limits respectively decrease and increase with fuel Lewis number before the flammability limit is reached, while the radical Lewis number shows the opposite tendency. In addition, the relation between the standard flammability limit and the limit derived from the strained near stagnation flame is affected by the fuel Lewis number, but not by the radical Lewis number. Meanwhile, the flammability limit increases with decreased fuel Lewis number, but with increased radical Lewis number. Radical behaviours at flame front corresponding to flame bifurcation and extinction are also analysed in this work. It is shown that radical concentration at the flame front, under extinction stretch rate condition, increases with radical Lewis number but decreases with fuel Lewis number. It decreases with increased radiation loss.  相似文献   

6.
A model is presented for a one-dimensional laminar premixed flame, propagating into a rich, off-stoichiometric, fresh homogenous mixture of water-in-fuel emulsion spray, air and inert gas. Due to its relatively large latent heat of vaporisation, the water vapour acts to cool the flame that is sustained by the prior release of fuel vapour. To simplify the inherent complexity that characterises the analytic solution of multi-phase combustion processes, the analysis is restricted to fuel-rich laminar premixed water-in-fuel flames, and assumes a single-step global chemical reaction mechanism. The main purpose is to investigate the steady-state burning velocity and burnt temperature as functions of parameters such as initial water content in the emulsified droplet and total liquid droplet loading. In particular, the influence of micro-explosion of the spray’s droplets on the flame’s characteristics is highlighted for the first time. Steady-state analytical solutions are obtained and the sensitivity of the flame temperature and the flame propagating velocity to the initial water content of the micro-exploding emulsion droplets is established. A linear stability analysis is also performed and reveals the manner in which the micro-explosions influence the neutral stability boundaries of both cellular and pulsating instabilities.  相似文献   

7.
The phenomenon of droplet clustering or grouping found when a spray of droplets is moving in an oscillating host flow field is investigated for the case of a polydisperse spray that fuels a laminar co-flow diffusion flame. A mathematical solution is developed for the liquid phase based on use of small Stokes numbers for size sections into which the polydisperse spray size distribution is divided. Droplet clustering in the oscillatory flow field is accounted for by constructing a special model for the sectional vaporization Damkohler numbers in accordance with droplet size. Combining this with a formal solution for a gas phase Schvab-Zel'dovich variable yields the means whereby flame dynamics can be described. Results calculated from this solution demonstrate that preferential droplet size behaviour (with smaller droplets tending to cluster to a greater extent and reduce the vaporization Damkohler number more than larger ones) can have a major impact on the flame dynamics through local droplet enrichment with attendant consequences on the production of fuel vapour. The dynamics of the sort of flame (over- or under-ventilated) and the occurrence of flame pinching leading to multiple flame sheets are altered under these circumstances. However, potential control of the actual initial spray polydispersity may reduce the intensity of such effects.  相似文献   

8.
To quantitatively understand the uncertainty of intrusive species sampling measurements using a microprobe, velocity and speciation profiles of acetone counterflow diffusion flames have been experimentally investigated with cross validations using non-intrusive particle image velocimetry (PIV) and laser induced fluorescence (LIF) measurements. It is shown that the separation distance between the fuel and oxidizer nozzles needs to be sufficiently large to achieve uniform radial velocity profiles at the nozzle exit and accurate measurements of fuel concentration distributions in flames. The impacts of the diffusion flame location relative to the stagnation plane and the diffusion flame thickness on quantitative species sampling are investigated by varying the fuel to oxygen ratio as well as nitrogen and helium as fuel diluents. The results show that the diffusion flame needs to be located on the fuel side far from the stagnation plane in order to obtain reliable speciation measurements of fuel oxidation-related species. For helium dilution in the fuel side, a significant deviation from the model prediction is found due to the excessively fast diffusion velocity of helium. The impact of the intrusive probe on the flow field and the structure of the counterflow diffusion flame are identified by acetone and OH LIF measurements. The uncertainty in the speciation measurement associated with flow perturbations by the probe is quantified and found to be comparable to the outer diameter of the probe, ±0.3 mm. A simple Reynolds number analysis shows that the flow near the probe is just on the outskirts of the Stokes regime. Finally, the structure of the acetone diffusion flame is measured quantitatively with species measurements of ethane, ethylene, and acetylene. The comparison between predictions and measurements indicate that the current C2 kinetic mechanism needs to be improved for quantitative prediction of the acetone flame structures.  相似文献   

9.
The transient convective burning of fuel-droplets interacting within 3-D infinite periodic arrays in a hot gas stream is numerically studied for the first time, with considerations of droplet regression, deceleration due to the drag of the droplets, internal liquid motion, variable properties, non-uniform liquid temperature, surface tension, and n-octane one-step oxidation kinetics. Depending upon the initial conditions and other constraints, a flame is established early as either a wake flame or an envelope flame. An initial envelope flame remains an envelope flame, and an initial wake flame has a tendency to develop from a wake flame to an envelope flame. The flame shows no strong tendency to modify significantly the standoff distance during the lifetime of the droplet. For an initial wake flame, the moment of wake-to-envelope transition is advanced as the initial droplet spacing (intermediate) is decreased, but tends to be postponed as the initial droplet spacing is further reduced. The burning rate at smaller initial droplet spacing or smaller initial Reynolds number might be greater for some period during the lifetime because of an earlier wake-to-envelope transition which elevates the average surface temperature. Lower ambient temperature yields a later wake-to-envelope transition time and smaller mass burning rate. At the lower ambient pressure with the same initial relative stream velocity, the average surface temperature is reduced, the wake-to-envelope transition is later, and the mass burning rate is smaller. Validation of our analysis is made by comparing with the results of an isolated droplet Wu and Sirignano [11].  相似文献   

10.
A partially prevaporized spray burner was developed to investigate the interaction between fuel droplets and a flame. Monodispersed partially prevaporized ethanol sprays with narrow diameter distribution were generated by the condensation method using rapid pressure reduction of a saturated ethanol vapor–air mixture. A tilted flat flame was stabilized at the nozzle exit using a hot wire. Particle tracking velocimetry (PTV) was applied to measurements of the droplet velocity; the laminar burning velocity was obtained from gas velocity derived from the droplet velocity. Observations were made of flames in partially prevaporized spray streams with mean droplet diameters of 7 μm and the liquid equivalence ratios of 0.2; the total equivalence ratio was varied. In all cases, a sharp vaporization plane was observed in front of the blue flame. Flame oscillation was observed on the fuel-rich side. At strain rates under 50 s−1, the change in the burning velocity with the strain rate is small in fuel-lean spray streams. In spray streams of 0.7 and 0.8 in the total equivalence ratio, burning velocity increases with strain rates of greater than 50 s−1. However, in spray streams with 0.9 and 1.0 in the total equivalence ratio, burning velocity decreases as the strain rate increases. At strain rates greater than 80 s−1, burning velocity decreases with an increased gas equivalence ratio. The effect of mean droplet diameter, and the entry length of droplets into a flame on the laminar burning velocity, were also investigated to interpret the effect of the strain rate on the laminar burning velocity of partially prevaporized sprays.  相似文献   

11.
The combustion of premixed gas mixtures containing micro droplets of water was studied using one-dimensional approximation. The dependencies of the burning velocity and flammability limits on the initial conditions and on the properties of liquid droplets were analyzed. Effects of droplet size and concentration of added liquid were studied. It was demonstrated that the droplets with smaller diameters are more effective in reducing the flame velocity. For droplets vaporizing in the reaction zone, the burning velocity is independent of droplet size, and it depends only on the concentration of added liquid. With further increase of the droplet diameter the droplets are passing through the reaction zone with completion of vaporization in the combustion products. It was demonstrated that for droplets above a certain size there are two stable stationary modes of flame propagation with transition of hysteresis type. The critical conditions of the transition are due to the appearance of the temperature maximum at the flame front and the temperature gradient with heat losses from the reaction zone to the products, as a result of droplet vaporization passing through the reaction zone. The critical conditions are similar to the critical conditions of the classical flammability limits of flame with the thermal mechanism of flame propagation. The maximum decrease in the burning velocity and decrease in the combustion temperature at the critical turning point corresponds to predictions of the classical theories of flammability limits of Zel'dovich and Spalding. The stability analysis of stationary modes of flame propagation in the presence of water mist showed the lack of oscillatory processes in the frames of the assumed model.  相似文献   

12.
The recently reported, experimentally observed, unusual behaviour of organic gellant-based fuel droplets which, under appropriate ambient thermal conditions, evaporate and burn in an oscillatory fashion is incorporated in a phenomenological manner in a model of a two-dimensional arbitrary multi-size spray diffusion flame. Non-unity Lewis numbers are permitted for the fuel vapour and oxidant. A combined analytical/numerical solution of the governing equations is presented and used to investigate how a spray's initial polydispersity and the frequency of oscillatory evaporation influence the combustion field. It is demonstrated that the initial droplet size distribution and the frequency of evaporation of the burning gel droplets can have an acute impact both on the homogeneous diffusion flame shape, height and width and on the thermal field downstream of the flame front. Hot spots of individual (or clusters of) burning droplets can be created and under certain operating conditions can lead to hotter temperatures than experienced in the main homogeneous flame. The intensity of these hotspots, their number and location are sensitive to spray related parameters. In realistic combustion chambers there is a danger inherent in the existence of hotspots in undesirable regions as they can damage the structural integrity. Other computed results demonstrate that, in relation to the spray diffusion flames obtained using an equivalent purely liquid fuel spray, the use of a gel fuel spray can lead, under certain operating conditions, to a reduction in flame height and temperature. The latter effect is critical when considering flame extinction.  相似文献   

13.
Flame spread on a fuel droplet array has been studied as a simple model of spray combustion. A three-fuel-droplet array with a pendulum suspender was employed to investigate interactions between flame spread and droplet motion in the axial direction. Initial droplet diameter was 0.8 mm, and fuel was n-heptane. A silicon carbide pendulum suspender of 15 μm in diameter and 30 mm in length was used for the third droplet. The first fixed droplet was ignited by electric spark. Behavior of the flame and the third droplet was observed using a high-speed video camera with an image intensifier. Particle tracking velocimetry (PTV) measurements were performed to explain the behavior of the third movable droplet. The dimensionless droplet span, which is the average of droplet-to-droplet distances divided by the average initial diameter of the three droplets, was varied from 2.5 to 8 for observing flame spread, and fixed at 5.5 for PTV measurements. It was observed that the third droplet moved away from the second droplet before the flame spread to the third droplet. The displacement of the third droplet is remarkable when the dimensionless droplet span is close to the limit of flame spread. This implies that the movement of the droplet decreases the dimensionless span of the flame spread limit and the flame spread speed near the flame spread limit. Results of PTV measurements suggest that the heat expansion wave, caused by ignition of the premixture which was accumulated around the second droplet, and the burned gas flow from the second droplet pushed away the third droplet; then natural convection, induced by the flames of the first and second droplets, drew the third droplet to the second droplet. The heat expansion wave and the burned gas flow of the second droplet reached nearly 12 in dimensionless span.  相似文献   

14.
15.
何博  丰松江  聂万胜 《计算物理》2013,30(2):194-202
考虑气相非稳态及液滴内部环流,建立运动液滴非稳态蒸发燃烧模型.模型采用动网格方法精确追踪液滴表面位置,采用守恒方程组更新液滴表面边界条件.根据单步全局化学反应机理,仿真研究正庚烷燃料液滴在不同对流速度下的火焰形态及燃烧.结果表明:运动液滴内部环流使液滴内部低温区向环流中心移动.当液滴运动速度大于某临界值后,火焰形态由包覆火焰转变为尾迹火焰.包覆火焰的富燃区范围、高温区范围及燃烧速率明显较尾迹火焰大;包覆火焰的液滴表面温度及表面蒸发流率分布也明显不同于尾迹火焰.  相似文献   

16.
17.
Combustion experiments of fuel droplet array in fuel vapor-air mixture were performed at microgravities to investigate growth mechanism of group combustion of fuel droplets. A 10-droplet array was inserted into the test section filled with a saturated fuel vapor-air mixture as a simple model of prevaporized sprays. Gas equivalence ratio of the fuel vapor-air mixture was regulated by the test section temperature. n-Decane droplets of 0.8 mm in the initial diameter were suspended at the crossing points of 10 sets of X-shaped suspenders. The first droplet was ignited by a hot wire to initiate flame spread along a fuel droplet array. Flame spread speed was obtained from the history of the leading edge position of a spreading flame. Effects of droplet spacing and gas equivalence ratio on the flame spreading behavior and the flame spread speed were examined. The droplet spacing and the gas equivalence ratio were varied from 1.6 to 10.2 mm and from 0.2 to 0.7, respectively. The gas equivalence ratio has little effect on the relationship between the flame spreading behavior and the droplet spacing. The flame spread speed increases as the increase in the gas equivalence ratio at all droplet spacings. The influence of the gas equivalence ratio on the flame spread speed becomes strong as the increase in the droplet spacings. The flame spread speed increases as the increase in the droplet spacing, and then decreases. The maximum flame spread speed appears in the range from 2.4 to 3 mm at all gas equivalence ratios.  相似文献   

18.
The influence of oxygen (O2) concentration and inert on the sooting and burning behavior of large ethanol droplets under microgravity conditions was investigated through measurements of burning rate, flame temperature, sootshell diameter, and soot volume fraction. The experiments were performed at the NASA Glenn Research Center (GRC) 2.2 s drop tower in Cleveland, OH. Argon (Ar), helium (He), and nitrogen (N2) were used as the inerts and the O2 concentration was varied between 21% and 50% mole fraction at 2.4 atm. The unique configuration of spherically symmetric droplet flames enables effective control of sooting over a wide range of residence time of fuel vapor transport, flame temperature, and regimes of sooting to investigate attendant influences on burning behavior of droplets. For all inert cases, soot volume fraction initially increased as a function of the O2 concentration. The highest soot volume fractions were measured for experiments in Ar environments and the lowest soot volume fractions were measured for the He environments. These differences were attributed to the changes in the residence time for fuel vapor transport and the flame temperature. For the He inert and N2 inert cases, the soot volume fraction began to decrease after reaching a maximum value. The competition between the influence of residence time, rate of pyrolysis reactions, and soot oxidation can lead to this interesting behavior in which the soot volume fraction varies non-monotonically with increase in O2 concentration. These experiments have developed new understanding of the burning and sooting behaviors of ethanol droplets under various O2 concentrations and inert substitutions.  相似文献   

19.
A theory of stagnation-point flow polydisperse spray flame ignition by an isothermal hot surface is presented for the first time. The configuration investigated consists of a mixture of fuel droplets and air flowing against an isothermal hot surface (such as a hot ignition probe). The polydisperse spray of droplets is modelled using the sectional approach. A single global chemical reaction is assumed for the case when ignition occurs. The mathematical analysis makes use of a small parameter that is exploited for an asymptotic approach. An analytical criterion for ignition is derived which includes effects of the flow field, the reactants and all the fuel spray-related parameters, including the initial size distribution of the spray's droplets. Numerical calculations disclose how the actual droplet size distribution impacts on the critical stagnation point temperature necessary to promote ignition. Additionally, the analytical estimates are compared with predictions of a numerical finite difference code with very satisfactory agreement.  相似文献   

20.
A well-defined plasma assisted combustion system with novel in situ discharge in a counterflow diffusion flame was developed to study the direct coupling kinetic effect of non-equilibrium plasma on flame ignition and extinction. A uniform discharge was generated between the burner nozzles by placing porous metal electrodes at the nozzle exits. The ignition and extinction characteristics of CH4/O2/He diffusion flames were investigated by measuring excited OH1 and OH PLIF, at constant strain rates and O2 mole fraction on the oxidizer side while changing the fuel mole fraction. It was found that ignition and extinction occurred with an abrupt change of OH1 emission intensity at lower O2 mole fraction, indicating the existence of the conventional ignition-extinction S-curve. However, at a higher O2 mole fraction, it was found that the in situ discharge could significantly modify the characteristics of ignition and extinction and create a new monotonic and fully stretched ignition S-curve. The transition from the conventional S-curves to a new stretched ignition curve indicated clearly that the active species generated by the plasma could change the chemical kinetic pathways of fuel oxidation at low temperature, thus resulting in the transition of flame stabilization mechanism from extinction-controlled to ignition-controlled regimes. The temperature and OH radical distributions were measured experimentally by the Rayleigh scattering technique and PLIF technique, respectively, and were compared with modeling. The results showed that the local maximum temperature in the reaction zone, where the ignition occurred, could be as low as 900 K. The chemical kinetic model for the plasma–flame interaction has been developed based on the assumption of constant electric field strength in the bulk plasma region. The reaction pathways analysis further revealed that atomic oxygen generated by the discharge was critical to controlling the radical production and promoting the chain branching effect in the reaction zone for low temperature ignition enhancement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号