首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
Let Θ = (θ 1,θ 2,θ 3) ∈ ℝ3. Suppose that 1, θ 1, θ 2, θ 3 are linearly independent over ℤ. For Diophantine exponents
$\begin{gathered} \alpha (\Theta ) = sup\left\{ {\gamma > 0: \mathop {\lim }\limits_{t \to } \mathop {\sup }\limits_{ + \infty } t^\gamma \psi _\Theta (t) < + \infty } \right\}, \hfill \\ \beta (\Theta ) = sup\left\{ {\gamma > 0: \mathop {\lim }\limits_{t \to } \mathop {\inf }\limits_{ + \infty } t^\gamma \psi _\Theta (t) < + \infty } \right\} \hfill \\ \end{gathered}$\begin{gathered} \alpha (\Theta ) = sup\left\{ {\gamma > 0: \mathop {\lim }\limits_{t \to } \mathop {\sup }\limits_{ + \infty } t^\gamma \psi _\Theta (t) < + \infty } \right\}, \hfill \\ \beta (\Theta ) = sup\left\{ {\gamma > 0: \mathop {\lim }\limits_{t \to } \mathop {\inf }\limits_{ + \infty } t^\gamma \psi _\Theta (t) < + \infty } \right\} \hfill \\ \end{gathered}  相似文献   

2.
Let Ω and Π be two finitely connected hyperbolic domains in the complex plane \Bbb C{\Bbb C} and let R(z, Ω) denote the hyperbolic radius of Ω at z and R(w, Π) the hyperbolic radius of Π at w. We consider functions f that are analytic in Ω and such that all values f(z) lie in the domain Π. This set of analytic functions is denoted by A(Ω, Π). We prove among other things that the quantities Cn(W,P) := supf ? A(W,P)supz ? W\frac|f(n)(z)| R(f(z),P)n! (R(z,W))nC_n(\Omega,\Pi)\,:=\,\sup_{f\in A(\Omega,\Pi)}\sup_{z\in \Omega}\frac{\vert f^{(n)}(z)\vert\,R(f(z),\Pi)}{n!\,(R(z,\Omega))^n} are finite for all n ? \Bbb N{n \in {\Bbb N}} if and only if ∂Ω and ∂Π do not contain isolated points.  相似文献   

3.
In this paper we consider the problem of bounding the Betti numbers, b i (S), of a semi-algebraic set S⊂ℝ k defined by polynomial inequalities P 1≥0,…,P s ≥0, where P i ∈ℝ[X 1,…,X k ], s<k, and deg (P i )≤2, for 1≤is. We prove that for 0≤ik−1,
This improves the bound of k O(s) proved by Barvinok (in Math. Z. 225:231–244, 1997). This improvement is made possible by a new approach, whereby we first bound the Betti numbers of non-singular complete intersections of complex projective varieties defined by generic quadratic forms, and use this bound to obtain bounds in the real semi-algebraic case. The first author was supported in part by an NSF grant CCF-0634907. The second author was partially supported by NSF grant CCF-0634907 and the European RTNetwork Real Algebraic and Analytic Geometry, Contract No. HPRN-CT-2001-00271.  相似文献   

4.
We consider generalized Morrey type spaces Mp( ·),q( ·),w( ·)( W) {\mathcal{M}^{p\left( \cdot \right),\theta \left( \cdot \right),\omega \left( \cdot \right)}}\left( \Omega \right) with variable exponents p(x), θ(r) and a general function ω(x, r) defining a Morrey type norm. In the case of bounded sets W ì \mathbbRn \Omega \subset {\mathbb{R}^n} , we prove the boundedness of the Hardy–Littlewood maximal operator and Calderón–Zygmund singular integral operators with standard kernel. We prove a Sobolev–Adams type embedding theorem Mp( ·),q1( ·),w1( ·)( W) ? Mq( ·),q2( ·),w2( ·)( W) {\mathcal{M}^{p\left( \cdot \right),{\theta_1}\left( \cdot \right),{\omega_1}\left( \cdot \right)}}\left( \Omega \right) \to {\mathcal{M}^{q\left( \cdot \right),{\theta_2}\left( \cdot \right),{\omega_2}\left( \cdot \right)}}\left( \Omega \right) for the potential type operator I α(·) of variable order. In all the cases, we do not impose any monotonicity type conditions on ω(x, r) with respect to r. Bibliography: 40 titles.  相似文献   

5.
For an arbitrary fixed segment [α, β] ⊂ R and given rN, A r , A 0, and p > 0, we solve the extremal problem
òab | x(k)(t) |qdt ? sup,     q \geqslant p,   k = 0,   q \geqslant 1,    1 \leqslant k \leqslant r - 1, \int\limits_\alpha^\beta {{{\left| {{x^{(k)}}(t)} \right|}^q}dt \to \sup, \,\,\,\,q \geqslant p,\,\,\,k = 0,\,\,\,q \geqslant 1,\,\,\,\,1 \leqslant k \leqslant r - 1,}  相似文献   

6.
We establish uniform estimates for order statistics: Given a sequence of independent identically distributed random variables ξ 1, … , ξ n and a vector of scalars x = (x 1, … , x n ), and 1 ≤ k ≤ n, we provide estimates for \mathbb E   k-min1 £ in |xixi|{\mathbb E \, \, k-{\rm min}_{1\leq i\leq n} |x_{i}\xi _{i}|} and \mathbb E k-max1 £ in|xixi|{\mathbb E\,k-{\rm max}_{1\leq i\leq n}|x_{i}\xi_{i}|} in terms of the values k and the Orlicz norm ||yx||M{\|y_x\|_M} of the vector y x  = (1/x 1, … , 1/x n ). Here M(t) is the appropriate Orlicz function associated with the distribution function of the random variable |ξ 1|, G(t) = \mathbb P ({ |x1| £ t}){G(t) =\mathbb P \left(\left\{ |\xi_1| \leq t\right\}\right)}. For example, if ξ 1 is the standard N(0, 1) Gaussian random variable, then G(t) = ?{\tfrac2p}ò0t e-\fracs22ds {G(t)= \sqrt{\tfrac{2}{\pi}}\int_{0}^t e^{-\frac{s^{2}}{2}}ds }  and M(s)=?{\tfrac2p}ò0se-\frac12t2dt{M(s)=\sqrt{\tfrac{2}{\pi}}\int_{0}^{s}e^{-\frac{1}{2t^{2}}}dt}. We would like to emphasize that our estimates do not depend on the length n of the sequence.  相似文献   

7.
For arbitrary [α, β] ⊂ R and p > 0, we solve the extremal problem
òab | x(k)(t) |qdt ? sup,     q 3 p,    k = 0    \textor    q 3 1,    k 3 1, \int\limits_\alpha^\beta {{{\left| {{x^{(k)}}(t)} \right|}^q}dt \to \sup, \quad q \geq p,\quad k = 0\quad {\text{or}}\quad q \geq 1,\quad k \geq 1},  相似文献   

8.
For x = (x 1, x 2, …, x n ) ∈ (0, 1 ] n and r ∈ { 1, 2, … , n}, a symmetric function F n (x, r) is defined by the relation
Fn( x,r ) = Fn( x1,x2, ?, xn;r ) = ?1 \leqslant1 < i2 ?ir \leqslant n ?j = 1r \frac1 - xijxij , {F_n}\left( {x,r} \right) = {F_n}\left( {{x_1},{x_2}, \ldots, {x_n};r} \right) = \sum\limits_{1{ \leqslant_1} < {i_2} \ldots {i_r} \leqslant n} {\prod\limits_{j = 1}^r {\frac{{1 - {x_{{i_j}}}}}{{{x_{{i_j}}}}}} },  相似文献   

9.
For log\frac1+?52 £ l* £ l* < ¥{\rm log}\frac{1+\sqrt{5}}{2}\leq \lambda_\ast \leq \lambda^\ast < \infty , let E*, λ*) be the set {x ? [0,1): liminfn ? ¥\fraclogqn(x)n=l*, limsupn ? ¥\fraclogqn(x)n=l*}. \left\{x\in [0,1):\ \mathop{\lim\inf}_{n \rightarrow \infty}\frac{\log q_n(x)}{n}=\lambda_{\ast}, \mathop{\lim\sup}_{n \rightarrow \infty}\frac{\log q_n(x)}{n}=\lambda^{\ast}\right\}. It has been proved in [1] and [3] that E*, λ*) is an uncountable set. In the present paper, we strengthen this result by showing that dimE(l*, l*) 3 \fracl* -log\frac1+?522l*\dim E(\lambda_{\ast}, \lambda^{\ast}) \ge \frac{\lambda_{\ast} -\log \frac{1+\sqrt{5}}{2}}{2\lambda^{\ast}}  相似文献   

10.
In the case where a 2π-periodic function f is twice continuously differentiable on the real axis ℝ and changes its monotonicity at different fixed points y i ∈ [− π, π), i = 1,…, 2s, s ∈ ℕ (i.e., on ℝ, there exists a set Y := {y i } i∈ℤ of points y i = y i+2s + 2π such that the function f does not decrease on [y i , y i−1] if i is odd and does not increase if i is even), for any natural k and n, nN(Y, k) = const, we construct a trigonometric polynomial T n of order ≤n that changes its monotonicity at the same points y i Y as f and is such that
*20c || f - Tn || £ \fracc( k,s )n2\upomega k( f",1 \mathord\vphantom 1 n n ) ( || f - Tn || £ \fracc( r + k,s )nr\upomega k( f(r),1 \mathord/ \vphantom 1 n n ),    f ? C(r),    r 3 2 ), \begin{array}{*{20}{c}} {\left\| {f - {T_n}} \right\| \leq \frac{{c\left( {k,s} \right)}}{{{n^2}}}{{{\upomega }}_k}\left( {f',{1 \mathord{\left/{\vphantom {1 n}} \right.} n}} \right)} \\ {\left( {\left\| {f - {T_n}} \right\| \leq \frac{{c\left( {r + k,s} \right)}}{{{n^r}}}{{{\upomega }}_k}\left( {{f^{(r)}},{1 \mathord{\left/{\vphantom {1 n}} \right.} n}} \right),\quad f \in {C^{(r)}},\quad r \geq 2} \right),} \\ \end{array}  相似文献   

11.
Take a linear ordinary differential operator $\mathfrak{d}\left( z \right) = \sum\nolimits_{i = 1}^k {Q_i \left( z \right)\frac{{d^i }} {{dz^i }}}$\mathfrak{d}\left( z \right) = \sum\nolimits_{i = 1}^k {Q_i \left( z \right)\frac{{d^i }} {{dz^i }}} with polynomial coefficients and set r = max i=1,…,k(deg Q i (z) − i). If d(z) satisfies the conditions: (i) r ≥ 0 and (ii) deg Q k (z) = k + r, we call it a non-degenerate higher Lamé operator. Following the classical examples of E. Heine and T. Stieltjes we initiated in [13] the study of the following multiparameter spectral problem: for each positive integer n find polynomials V (z) of degree at most r such that the equation
\mathfrakd( z )S( z ) + V( z )S( z ) = 0\mathfrak{d}\left( z \right)S\left( z \right) + V\left( z \right)S\left( z \right) = 0  相似文献   

12.
We study the empirical process ${{\rm sup}_{f \in F}|N^{-1}\sum_{i=1}^{N}\,f^{2}(X_i)-\mathbb{E}f^{2}|}We study the empirical process supf ? F|N-1?i=1N f2(Xi)-\mathbbEf2|{{\rm sup}_{f \in F}|N^{-1}\sum_{i=1}^{N}\,f^{2}(X_i)-\mathbb{E}f^{2}|}, where F is a class of mean-zero functions on a probability space (Ω, μ), and (Xi)i = 1N{(X_{i})_{i =1}^N} are selected independently according to μ.  相似文献   

13.
We give a new proof that a star {op i :i=1,…,k} in a normed plane is a Steiner minimal tree of vertices {o,p 1,…,p k } if and only if all angles formed by the edges at o are absorbing (Swanepoel in Networks 36: 104–113, 2000). The proof is simpler and yet more conceptual than the original one. We also find a new sufficient condition for higher-dimensional normed spaces to share this characterization. In particular, a star {op i :i=1,…,k} in any CL-space is a Steiner minimal tree of vertices {o,p 1,…,p k } if and only if all angles are absorbing, which in turn holds if and only if all distances between the normalizations \frac1||pi||pi\frac{1}{\Vert p_{i}\Vert}p_{i} equal 2. CL-spaces include the mixed 1 and sum of finitely many copies of ℝ.  相似文献   

14.
Let X, X 1, X 2,… be i.i.d. \mathbbRd {\mathbb{R}^d} -valued real random vectors. Assume that E X = 0 and that X has a nondegenerate distribution. Let G be a mean zero Gaussian random vector with the same covariance operator as that of X. We study the distributions of nondegenerate quadratic forms \mathbbQ[ SN ] \mathbb{Q}\left[ {{S_N}} \right] of the normalized sums S N  = N −1/2 (X 1 + ⋯ + X N ) and show that, without any additional conditions,
DN(a) = supx | \textP{ \mathbbQ[ SN - a ] \leqslant x } - \textP{ \mathbbQ[ G - a ] \leqslant x } - Ea(x) | = O( N - 1 ) \Delta_N^{(a)} = \mathop {{\sup }}\limits_x \left| {{\text{P}}\left\{ {\mathbb{Q}\left[ {{S_N} - a} \right] \leqslant x} \right\} - {\text{P}}\left\{ {\mathbb{Q}\left[ {G - a} \right] \leqslant x} \right\} - {E_a}(x)} \right| = \mathcal{O}\left( {{N^{ - 1}}} \right)  相似文献   

15.
Let Lf(x)=-\frac1w?i,j ?i(ai,j(·)?jf)(x)+V(x)f(x){\mathcal{L}f(x)=-\frac{1}{\omega}\sum_{i,j} \partial_i(a_{i,j}(\cdot)\partial_jf)(x)+V(x)f(x)} with the non-negative potential V belonging to reverse H?lder class with respect to the measure ω(x)dx, where ω(x) satisfies the A 2 condition of Muckenhoupt and a i,j (x) is a real symmetric matrix satisfying l-1w(x)|x|2 £ ?ni,j=1ai,j(x)xixj £ lw(x)|x|2.{\lambda^{-1}\omega(x)|\xi|^2\le \sum^n_{i,j=1}a_{i,j}(x)\xi_i\xi_j\le\lambda\omega(x)|\xi|^2. } We obtain some estimates for VaL-a{V^{\alpha}\mathcal{L}^{-\alpha}} on the weighted L p spaces and we study the weighted L p boundedness of the commutator [b, Va L-a]{[b, V^{\alpha} \mathcal{L}^{-\alpha}]} when b ? BMOw{b\in BMO_\omega} and 0 < α ≤ 1.  相似文献   

16.
In this paper, we will establish some new properties of traveling waves for integrodifference equations with the nonmonotone growth functions. More precisely, for c ≥ c *, we show that either limx?+¥ f(x)=u*{\lim\limits_{\xi\rightarrow+\infty} \phi(\xi)=u*} or 0 < liminfx? + ¥ f(x) < u* < limsupx?+¥f(x) £ b,{0 < \liminf\limits_{\xi \rightarrow + \infty} \phi(\xi) < u* < \limsup \limits_{\xi\rightarrow+\infty}\phi(\xi)\leq b,} that is, the wave converges to the positive equilibrium or oscillates about it at +∞. Sufficient conditions can assure that both results will arise. We can also obtain that any traveling wave with wave speed c > c* possesses exponential decay at −∞. These results can be well applied to three types of growth functions arising from population biology. By choosing suitable parameter numbers, we can obtain the existence of oscillating waves. Our analytic results are consistent with some numerical simulations in Kot (J Math Biol 30:413–436, 1992), Li et al. (J Math Biol 58:323–338, 2009) and complement some known ones.  相似文献   

17.
We establish the existence of infinitely many polynomial progressions in the primes; more precisely, given any integer-valued polynomials P 1, …, P k  ∈ Z[m] in one unknown m with P 1(0) = … = P k (0) = 0, and given any ε > 0, we show that there are infinitely many integers x and m, with 1 \leqslant m \leqslant xe1 \leqslant m \leqslant x^\varepsilon, such that x + P 1(m), …, x + P k (m) are simultaneously prime. The arguments are based on those in [18], which treated the linear case P j  = (j − 1)m and ε = 1; the main new features are a localization of the shift parameters (and the attendant Gowers norm objects) to both coarse and fine scales, the use of PET induction to linearize the polynomial averaging, and some elementary estimates for the number of points over finite fields in certain algebraic varieties.  相似文献   

18.
It is proved that if positive definite matrix functions (i.e. matrix spectral densities) S n , n=1,2,… , are convergent in the L 1-norm, ||Sn-S||L1? 0\|S_{n}-S\|_{L_{1}}\to 0, and ò02plogdetSn(eiqdq?ò02plogdetS(eiqdq\int_{0}^{2\pi}\log \mathop{\mathrm{det}}S_{n}(e^{i\theta})\,d\theta\to\int_{0}^{2\pi}\log \mathop{\mathrm{det}}S(e^{i\theta})\,d\theta, then the corresponding (canonical) spectral factors are convergent in L 2, ||S+n-S+||L2? 0\|S^{+}_{n}-S^{+}\|_{L_{2}}\to 0. The formulated logarithmic condition is easily seen to be necessary for the latter convergence to take place.  相似文献   

19.
Let θ(ζ) be a Schur operator function, i.e., it is defined and holomorphic on the unit disk := C : 1 {\mathbb {D} := \{\zeta \in \mathbb {C} : \vert\zeta\vert < 1 \}} and its values are contractive operators acting from one Hilbert space into another one. In the first part of the paper the outer and *-outer Schur operator functions j(z){\varphi(\zeta)} and ψ(ζ) which describe respectively the deviations of the function θ(ζ) from inner and *-inner operator functions are studied. If j(z) 1 0{\varphi(\zeta)\neq 0} , then it means that in the scattering system for which θ(ζ) is the transfer function a portion of “information” comes inward the system and does not go outward, i.e., it is left in the internal channels of the system (Sect. 6). The function ψ(ζ) has the analogous property for the dual system. For this reason these functions are called the defect functions of the function θ(ζ). The explicit form of the defect functions j(z){\varphi(\zeta)} and ψ(ζ) is obtained and the analytic connection of these functions with the function θ(ζ) is described (Sects. 3, 5). The operator functions (l j(z)q(z)){\left(\begin{array}{l} \varphi(\zeta)\\ \theta(\zeta)\end{array}\right)} and (ψ(ζ), θ(ζ)) are Schur functions as well (Sect. 3). It is important that there exists the unique contractive measurable operator function χ(t), t ? ?\mathbb D{t\in\partial\mathbb {D}} , such that the operator function (l c(t)    j(t)y(t)    q(t) ){\left(\begin{array}{l} \chi(t)\quad \varphi(t)\\ \psi(t)\quad \theta(t) \end{array}\right)} , t ? ?\mathbb D,{t\in\partial\mathbb {D},} is also contractive (Part II, Sect. 12). The second part of the paper is devoted to studying the properties of the function χ(t). Specifically, it is shown that the function χ(t) is the scattering suboperator through the internal channels of the scattering system for which θ(ζ) is the transfer function (Part II, Sect. 12).  相似文献   

20.
WEIGHTEDAPPROXIMATIONOFRANDOMFUNCTIONSYUJIARONGAbstract:Let(Ω,A,P)beaprobabilityspace,X(t,ω)arandomfunctioncontinuousinprobab...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号