首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
Some qualitative aspects of the problem of motion about a fixed point of a rigid body with a particle moving in it in a prescibed (sinusoidal) way was treated in [1–3]. The mechanical system comprised of a rigid body containing an internal mass that moves along a fixed line in the body was considered in several works [4–5]. Recently, an integrable case of this system was found, in which the body is dynamically axisymmetric and moves under no external forces while the particle moves on the axis of dynamical symmetry under the action of Hooke's force to the fixed point [5].In the present note we introduce a more general integrable case in which the particle moves on the axis of dynamical symmetry and is subject to an arbitary conservative force that depends only on the distance from the fixed point. Separation of variables is accomplished and the solution is reduced to quadratures. As a special version of this problem, the case when the particle bounces elastically between two points is briefly discussed.  相似文献   

2.
The motion of fluid particles of an inviscid incompressible fluid on a bounded domain is formulated from a Lagrangian point of view. This is accomplished by observing that Euler's equation of motion is a geodesic equation on a group of volume-preserving diffeomorphisms with the metric defined by the kinetic energy. This formulation is based on Riemannian geometry and Lie group theory, first developed by Arnold (1966). Behaviors of the geodesics are characterized by Riemannian (sectional) curvatures, which are shown to be mostly negative (with some exceptions). This property is related to the mixing and ergodicity of the fluid motions. Free rotation of a rigid body fixed at a point gives a simplest example of the dynamical systems which are integrable and represented with such formulation. The same method is applied to the other integrable systems such as the vortex-filament equation or the KdV equation. In contrast to the hydrodynamic system, sectional curvatures are found to be mostly positive (with exceptions). Thus it is found that integrable systems are more stable in the behavior of geodesics than the hydrodynamic system governed by the Euler's equation of motion. Received 16 January 1997 and accepted 30 May 1997  相似文献   

3.
Despite the rarity of integrable problems in rigid body dynamics, amazing relative abundance of these problems is observed when the body has the famous Kovalevskaya configuration A=B=2C. In the present work, the general problem of motion of such a rigid body about a fixed point under the action of axially symmetric conservative forces is considered. The classical problem of motion of a heavy rigid body or a gyrostat and the problem of motion of a body in an ideal fluid are special cases.Three new integrable cases valid for Kovalevskaya's configuration are introduced of which one is general and the other two are restricted to the zero level of the cyclic integral. It is also shown that all the previously known results concerning the preesent problem are special versions of four different cases.  相似文献   

4.
The motion of two point vortices defines an integrable Hamiltonian dynamical system in either singly or doubly periodic domains. The motion of three point vortices in these domains is also integrable when the net circulation is zero. The relative vortex motion in both domains can be reduced to advection of a passive particle by fixed vortices in an equivalent Hamiltonian system. A survey of the solutions for vortex motion in these systems is discussed. Some initial conditions lead to relative equilibria, or vortex configurations that move without change of shape or size. These configurations can be determined as stagnation points in the reduced problem or through explicit solution of the governing equations. These periodic point-vortex systems present a rich collection of interesting solutions despite the few degrees of freedom, and several questions on this subject remain open.  相似文献   

5.
The motion of a nonlinearly nonholonomically constrained system comprised of two material points connected by a “fork” is investigated in the nonresonance case. This leads to two equations of motion; one of which is nonlinear in the system velocities. The system is shown to be integrable in the nonresonance case, and the motion is described analytically and also computed numerically for several parameter values yielding results that conform to the analytical predictions.  相似文献   

6.
This paper investigates the flow structure in the wake behind the centrebody of an annular jet using time-resolved stereoscopic PIV measurements. Although the time-averaged flow field is symmetric, the instantaneous wake is asymmetric. It consists of a central toroidal vortex (CTV), which closes downstream at the stagnation point. This stagnation point lies off-axis and hence the axis of the CTV is tilted with respect to the central axis of the geometry. The CTV precesses around the central axis, corresponding to a Strouhal number of 2.5 × 10−3. The phase averaging technique is used to study this large-scale motion as it can separate the precession from the turbulence in the flow field. It is found that the precession creates a highly three-dimensional flow field and for instance near the stagnation point, up to 45% of the rms velocity fluctuations are attributed to it.  相似文献   

7.
We investigate the equations of motion of large snow avalanches, and in contrast with [1–3] we take into account the fact that the dry friction can reach a critical value above which the snow in the avalanche or the underlaying material cannot sustain the friction. We find asymptotic solutions for long times after the beginning of motion. These solutions describe the avalanche motion in which a part of the snow moves in the conditions of limiting friction over a tilted plane with a uniform layer of snow. The equations which are used to find these asymptotic solutions have the property that for certain depths the flow velocity of small perturbations decreases with increasing depth. This is related to a number of unusual features (from the hydraulic point of view) of the solutions. In particular, on relatively gentle slopes two zones are formed in the avalanche: the forward part, with a large velocity and thickness of the moving layer, and the rear part, which is significantly slower and thinner. The two parts are separated by a narrow region characterized by a sharp decline in velocity and thickness of the moving layer.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 5, pp. 30–37, September–October, 1977.  相似文献   

8.
Using a transformation matrix, we reduce a system of differential equations with a small parameter in the coefficients of a part of derivatives and a turning point to an integrable system of equations.  相似文献   

9.
细长锥边界层绊线转捩风洞自由飞试验   总被引:2,自引:1,他引:1  
宋威  蒋增辉  贾区耀 《力学学报》2016,48(6):1301-1307
通过在半锥角θ_c=10°细长锥面上布置一定数量的人工绊线,促使细长锥表面边界层在相应轴向位置上发生层流向湍流转变的固定转捩,采用运动自由度不受约束的风洞自由飞试验技术研究边界层转捩对高超声速细长锥再入体无控自由飞行下的运动特性和气动特性影响规律,并与以往无人工绊线的细长锥风洞自由飞试验结果作对比.试验马赫数Ma=5.0,通过改变风洞前室总压P_0实现两个雷诺数的模拟,以模型长为特征尺寸自由流雷诺数分别为0.84×10~6和1.68×10~6.结果表明:当自由流雷诺数Re=0.84×10~6时,人工绊线尚不足以促使边界层发生转捩,有绊线的细长锥气动特性与无绊线基本一致,动稳定导数大于零;当自由流雷诺数Re=1.68×10~6时,人工绊线促使边界层发生固定转捩,细长锥的动稳定导数小于零,细长锥自由飞行动稳定.  相似文献   

10.
We study an idealized model of body–vortex interaction in two dimensions. The fluid is incompressible and inviscid and assumed to occupy the entire unbounded plane except for a simply connected region representing a rigid body. There may be a constant circulation around the body. The fluid also contains a finite number of point vortices of constant circulation but is otherwise irrotational. We assign a mass distribution to the body and let it move and rotate freely in response to the force and torque exerted by the fluid. Conversely, the fluid moves in response to the body motion. We study the occurrence of chaos in the system of ODEs emerging from these assumptions. It is well-known that the system consisting of a circular body with uniform mass distribution interacting with a single point vortex is integrable. Here we investigate how this integrability breaks down when the body center-of-mass is displaced from its geometrical center. We find two distinct regions of chaos and discuss how they relate to the topology of the trajectories of body and vortex.  相似文献   

11.
We study the dynamics of a complex system consisting of a solid and a mass point moving according to a prescribed law along a curve rigidly fixed to the body. The motion occurs in a central Newtonian gravitational field. It is assumed that the orbit of the system center of mass is an ellipse of arbitrary eccentricity.We obtain equations that describe the motion of the carrier (satellite) about its center of mass. In the case of a circular orbit, we present conditions that should be imposed on the law of the relative motion of the mass point carried by the satellite so that the latter preserves a constant attitude with respect to the orbital coordinate system. In the case of a dynamically symmetric satellite, we consider the problem of existence of stationary and nearly stationary rotations for the case in which the carried point moves along the satellite symmetry axis.We consider several problems of dynamics of the satellite plane motion about its center of mass in an elliptic orbit of arbitrary eccentricity. In particular, we present the law of motion of the carried point in the case without eccentricity oscillations and study the stability of the satellite permanent attitude with respect to the orbital coordinate system.  相似文献   

12.
朱浩  程克明 《力学学报》2009,41(5):789-793
平面上理想流体的三点涡系统是可积的Hamilton系统, 但其运动仍然相当复杂, 这给研究被动微粒在三点涡系统中运动带来了很大的困难. 着眼于点涡系统的被动微粒对初始小扰动的稳定性, 通过Oseledec定理定义被动微粒的Lyapunov指数, 给出了点涡系统中被动微粒稳定性的定量刻画. 同时, 由Hamilton系统的保体积性质得到的关于Lyapunov指数的简洁表达式, 避免了计算的繁琐. 利用这个定义, 点涡系的瞬时流场可以被划分成若干区域, 被动微粒的混沌运动只能在近涡的特定区域出现.   相似文献   

13.
In book II of Newton's Principia Mathematica of 1687 several applicative problems are introduced and solved. There, we can find the formulation of the first calculus of variations problem that leads to the first free boundary problem of history. The general calculus of variations problem is concerned with the optimal shape design for the motion of projectiles subject to air resistance. Here, for Newton's optimal nose cone free boundary problem, we define a non-iterative initial value method which is referred in the literature as a transformation method. To define this method we apply invariance properties of Newton's free boundary problem under a scaling group of point transformations. Finally, we compare our non-iterative numerical results with those available in the literature and obtained via an iterative shooting method. We emphasize that our non-iterative method is faster than shooting or collocation methods and does not need any preliminary computation to test the target function as the iterative method or even provide any initial iterate. Moreover, applying Buckingham Pi-Theorem we get the functional relation between the unknown free boundary and the nose cone radius and height.  相似文献   

14.
Using a transformation matrix, we reduce a system of differential equations with a small parameter in the coefficients of some derivatives and a turning point to an integrable system of equations. We also study properties of the transformation matrix.  相似文献   

15.
This communication considers the steady converging/diverging flow of a non-Newtonian viscous power-law fluid in a round cone. The motion is driven by a sink/source of mass at the origin. It is shown that the problem permits exact similarity solution for a particular value (n=4/3) of the fluid index. In this case a complete set of governing equations can be reduced to an ordinary differential equation, which is solved numerically for different values of the main non-dimensional parameters (the cone angle and the dimensionless sink/source intensity).  相似文献   

16.
We are interested in the motion of a simple mechanical system having a finite number of degrees of freedom subjected to a unilateral constraint with dry friction and delay effects (with maximal duration τ>0). At the contact point, we characterize the friction by a Coulomb law associated with a friction cone. Starting from a formulation of the problem that was given by Jean-Jacques Moreau in the form of a second-order differential inclusion in the sense of measures, we consider a sweeping process algorithm that converges towards a solution to the dynamical contact problem. The mathematical machinery as well as the general plan of the existence proof may seem much too heavy in order to treat just this simple case, but they have proved useful in more complex settings.  相似文献   

17.
It is well known that conservative holonomic and scleromic systems with two degrees of freedom which have one cyclic coordinate are ‘integrable’. This means that the solution to the equations of motion can be given analytically in terms of quadratures, due to the existence of the two first integrals: the energy integral and the integral corresponding to the cyclic coordinate. In the present paper it is shown that the system is ‘integrable’ even if it is only holonomic and scleronomic and has one ‘quasi-cyclic’ coordinate, and even if the generalized forces are non-conservative provided the kinetic energy satisfies a certain additional condition.  相似文献   

18.
Attitude dynamics of an asymmetrical apparent gyrostat satellite has been considered. Hamiltonian approach and Routhian are used to prove that the dynamics of the system consists of two separate parts, an integrable and a non-integrable. The integrable part shows torque free motion of gyrostat, while the non-integrable part shows the effect of rotation about the earth and asphericity of the satellites inertia ellipsoid. Using these results, theoretically when the non-integrable part is eliminated, we are able to design a satellite with exactly regular motion. But from the engineering point of view the remaining errors of manufacturing process of the mechanical parts cause that the non-integrable part can not be eliminated, completely. So this case can not be achieved practically. Using Serret–Andoyer canonical variable the Hamiltonian transformed to a more appropriate form. In this new form the effect of the gravity, asphericity, rotational motion and spin of the rotor are explicitly distinguished. The results lead us to another way of control of chaos. To suppress the chaotic zones in the phase space, higher rotational kinetic energy can be used. Increasing the parameter related to the spin of the rotor causes the systems phase space to pass through a heteroclinic bifurcation process and for the sufficiently large magnitude of the parameter the heteroclinic structure can be eliminated. Local bifurcation of the phase space of the integrable part and global heteroclinic bifurcation of whole systems phase space are presented. The results are examined by the second order Poincaré surface of section method as a qualitative, and the Lyapunov characteristic exponents as a quantitative criterion.  相似文献   

19.
We construct a point transformation between two integrable systems, the multi-component Harry Dym equation and the multi-component extended Harry Dym equation, that does not preserve the class of multi-phase solutions. As a consequence we obtain a new type of wave-like solutions, generalising the multi-phase solutions of the multi-component extended Harry Dym equation. Our construction is easily transferable to other integrable systems with analogous properties.  相似文献   

20.
This work is an investigation on the roots of chaotic attitudinal motion in a class of asymmetrical gyrostat satellites. The result shows that for a class of Kelvin type gyrostat satellite, there is an equivalent rigid spinning satellite with the same attitude dynamics. Finding some constants of motion and eliminating the cyclic coordinates, the rotational kinetic energy is changed to a quadratic form and using Jordan canonical form of the associated inertia tensor and transforming the coordinate system, the Hamiltonian has been changed to those of a rigid satellite. The Hamiltonian has been split into integrable and non-integrable parts. Using Deprit canonical transformation and Andoyer variables the integrable part has been reduced to a one-dimensional form. The reduced Hamiltonian shows that the regular dynamics of the satellite can be chaotic, under the influence of gravitational effects. To demonstrate various attitudinal dynamics of the satellite, a second-order Poincaré map is employed. This research shows firstly, that the attitudinal dynamics of Kelvin type gyrostat satellites and rigid satellites follow the same dynamical patterns, secondly, for non-linear analysis of dynamics of gyrostat satellite based on the perturbation methods, there is a preferable form for Hamiltonian of the system in the near-integrable fashion and thirdly the chaotic motion is originated from the gravitational field effects that can be suppressed by increasing the attitudinal energy of the satellite in comparison with the translational energy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号