首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 25 毫秒
1.
The oscillations of a physical pendulum containing a spherical cavity filled with an incompressible viscous liquid were discussed in [1]. In this paper we consider the mote general problem of the motion of an axially symmetric solid with a spherical cavity filled with an incompressible viscous fluid and moving about a fixed point. It is assumed that the center of the cavity and the fixed point lie on the axis of symmetry of the body.  相似文献   

2.
Despite the rarity of integrable problems in rigid body dynamics, amazing relative abundance of these problems is observed when the body has the famous Kovalevskaya configuration A=B=2C. In the present work, the general problem of motion of such a rigid body about a fixed point under the action of axially symmetric conservative forces is considered. The classical problem of motion of a heavy rigid body or a gyrostat and the problem of motion of a body in an ideal fluid are special cases.Three new integrable cases valid for Kovalevskaya's configuration are introduced of which one is general and the other two are restricted to the zero level of the cyclic integral. It is also shown that all the previously known results concerning the preesent problem are special versions of four different cases.  相似文献   

3.
We study stress concentration near a circular rigid inclusion in an unbounded elastic body (matrix). In the matrix, there are wave motions symmetric with respect to the axis passing through the inclusion center and perpendicular to the inclusion. It is assumed that one of the inclusion sides is completely fixed to the matrix, while the other side is separated and the conditions of smooth contact are realized on that side. The solution method is based on the fact that the displacements caused by waves reflected from the inclusion are represented as a discontinuous solution of the Lamé equations. This permits reducing the original problem to a system of singular integral equations for functions related to the stress and displacement jumps on the inclusion. Its solution is constructed approximately by the collocation method with the use of special quadrature formulas for singular integrals. The approximate solution thus obtained permits numerically studying the stress state in the matrix near the inclusion. Technological defects or constructive elements in the form of thin rigid inclusions contained in machine parts and engineering structure members are stress concentration sources, which may result in structural failure. It is shown that the largest stress concentration is observed near separated inclusions. Static problems for elastic bodies with such inclusions have been studied rather comprehensively [1, 2]. The stress concentration near separated inclusions under dynamic actions on the bodies has been significantly less studied even in the case of harmonic vibrations. The results of these studies can be found in [3, 4], where bodies with a thin separated inclusion were considered, and in [5], where the problem about torsional vibrations of a body with a thin circular separated inclusion was studied. The aim of the present paper is to study stress concentration near such an inclusion in the case of interaction with harmonic waves under axial symmetry conditions.  相似文献   

4.
We consider the problem of stabilization with respect to a prescribed position for the translational motion of a rigid body with interior material points connected with each other and with the exterior body by linear viscoelastic constraints. The motion occurs under the action of a constant exterior perturbation and a bang-bang control force that are directed along the line of motion. We assume that the bang-bang force control channel has a fixed delay, so that arbitrarily frequent switchings are impossible. We suggest a positional control ensuring the solution of this problem. We estimate the amplitude of the rigid body vibrations about the center of mass of the entire structure and the accuracy of stabilization of the prescribed position of the rigid body depending on the mechanical characteristics of the system and the control force magnitude. We also consider the problem of maximizing the stabilization accuracy depending on the control parameters. By way of example, we consider the controlled motion of a two-mass oscillatory system. This work is closely related to [1–3] and continues the studies of the guaranteed optimal bang-bang controllers with delay in the control channel [4–9]. The dynamics of a rigid body with elastic and dissipative elements was studied in [10] under the assumption that the period of natural vibrations and their decay time are small compared with the characteristic time of motion.  相似文献   

5.
The analytic solution of the problem of forced vibrations of a rigid body with cylindrical surface on a horizontal foundation is given. It is assumed that the dry friction force acts at the point of contact between the cylindrical surface of the body and the foundation and the foundation moves by a harmonic law in the horizontal direction perpendicularly to the cylindrical surface element. The averaging method is used to determine the forced vibration mode near the natural frequency of the body vibrations on the fixed foundation. The results are presented as amplitude-frequency and phase-frequency characteristics.  相似文献   

6.
We consider the problem of construction of optimal laws of variation in the angular momentum vector of a dynamically symmetric rigid body so as to ensure the transition of the rigid body from an arbitrary initial angular position to the required final angular position. For the functionals to be minimized, we use combined performance functionals, one of which characterizes the expenditure of time and of the squared modulus of the angular momentum vector in a given proportion, while the other characterizes the expenditure of time and momentum of the modulus of the angular momentum vector necessary to change the rigid body orientation. The control (the vector of the rigid body angular momentum) is assumed to be bounded in the modulus. The problem is solved by using Pontryagin’s maximum principle and the quaternion differential equation [1, 2] relating the vector of the dynamically symmetric rigid body angular momentum to the quaternion of orientation of the coordinate system rotating with respect to the rigid body about its dynamical symmetry axis at an angular velocity proportional to the angular momentum vector projection on the axis. The use of such a model of rotational motion leads to the problem of optimal control with the moving right end of the trajectory and significantly simplifies the analytic study of the problem of construction of optimal laws of variation in the angular momentum vector, because this model explicitly exploits the body angular momentum quaternion (control) instead of the rigid body absolute angular velocity quaternion. We construct general analytic solutions of the differential equations for the boundary-value problems which form systems of nine nonlinear differential equations. It is shown that the process of solving the differential boundary-value problems is reduced to solving two scalar algebraic transcendental equations.  相似文献   

7.
We study the dynamics of a complex system consisting of a solid and a mass point moving according to a prescribed law along a curve rigidly fixed to the body. The motion occurs in a central Newtonian gravitational field. It is assumed that the orbit of the system center of mass is an ellipse of arbitrary eccentricity.We obtain equations that describe the motion of the carrier (satellite) about its center of mass. In the case of a circular orbit, we present conditions that should be imposed on the law of the relative motion of the mass point carried by the satellite so that the latter preserves a constant attitude with respect to the orbital coordinate system. In the case of a dynamically symmetric satellite, we consider the problem of existence of stationary and nearly stationary rotations for the case in which the carried point moves along the satellite symmetry axis.We consider several problems of dynamics of the satellite plane motion about its center of mass in an elliptic orbit of arbitrary eccentricity. In particular, we present the law of motion of the carried point in the case without eccentricity oscillations and study the stability of the satellite permanent attitude with respect to the orbital coordinate system.  相似文献   

8.
The oscillations of a rigid body having a cavity partially filled with an ideal fluid have been studied in numerous reports, for example, [1–6]. Certain analogous problems in the case of a viscous fluid for particular shapes of the cavity were considered in [6, 7]. The general equations of motion of a rigid body having a cavity partially filled with a viscous liquid were derived in [8]. These equations were obtained for a cavity of arbitrary form under the following assumptions: 1) the body and the liquid perform small oscillations (linear approximation applicable); 2) the Reynolds number is large (viscosity is small). In the case of an ideal liquid the equations of [8] become the previously known equations of [2–6]. In the present paper, on the basis of the equations of [8], we study the free and the forced oscillations of a body with a cavity (vessel) which is partially filled with a viscous liquid. For simplicity we consider translational oscillations of a body with a liquid, since even in this case the characteristic mechanical properties of the system resulting from the viscosity of the liquid and the presence of a free surface manifest themselves.The solutions are obtained for a cavity of arbitrary shape. We then consider some specific cavity shapes.  相似文献   

9.
In classical hydrodynamics the situation is examined in which a body moves in a liquid under the condition that at infinity the liquid is quiescent or in translation [1, 2]. In [3] the problem of flow around a cylinder by an arbitrary liquid current is solved, with consideration not only of flow velocities, but also of their variability over the coordinates. In the present study these earlier results will be generalized to the case of motion of a thin curved body of circular cross section in an arbitrary spatial potential flow of an ideal incompressible liquid.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 1, pp. 9–12, January–February, 1973.  相似文献   

10.
We consider the motion of a rigid body with a single fixed point in a homogeneous gravity field. The body mass geometry and the initial conditions for its motion correspond to the case of Goryachev—Chaplygin integrability. We study the orbital stability problem for periodic motions corresponding to vibrations and rotations of the rigid body rotating about the equatorial axis of the inertia ellipsoid.In [1], it was proved that these periodic motions are orbitally unstable in the linear approximation. It was also shown that, to solve the stability problem in the nonlinear setting, it does not suffice to analyze terms up to the fourth order in the expansion of the Hamiltonian function in the canonical variables.The present paper shows that in this problem one deals with a special case where standard methods for stability analysis based on the coefficients in the normal form of the Hamiltonian of the perturbed equations of motion do not apply. We use Chetaev’s theorem to prove the orbital instability of these periodic motions in the rigorous nonlinear statement of the problem. The proof uses the additional first integral of the Goryachev—Chaplygin problem in an essential way.  相似文献   

11.
We consider the problem of constructing optimal preset laws of variation of the angular momentum vector of a rigid body taking the body from an arbitrary initial angular position to the required terminal angular position in a given time. We minimize an integral quadratic performance functional whose integrand is a weighted sum of squared projections of the angular momentum vector of the rigid body. We use the Pontryagin maximum principle to derive necessary optimality conditions. In the case of a spherically symmetric rigid body, the problem has a well-known analytic solution. In the case where the body has a dynamic symmetry axis, the obtained boundary value optimization problem is reduced to a system of two nonlinear algebraic equations. For a rigid body with an arbitrarymass distribution, optimal control laws are obtained in the form of elliptic functions. We discuss the laws of controlled motion and applications of the constructed preset laws in systems of attitude control by external control torques or rotating flywheels.  相似文献   

12.
The angular superposition method is used to construct an approximate solution of the contact problem on the compression of an elastic cylinder by two rigid plates. The solution thus obtained has a closed-form analytic expression and can be used in the entire domain of the cylinder cross-section. We analyze the absolute error, which takes the largest value near the points of contact between the plates and the cylinder, where the boundary conditions are discontinuous. According to the von Mises criterion, when moving into the depth of the cylinder from the contact site along the symmetry axis, the second invariant J 2 of the stress deviator tensor first decreases and then, after attaining a minimum, increases and attains the largest value at a small depth, which agrees with Johnson’s photoelastic experiments and Dinnik’s computations. We present the graphs of the displacement and normal stress distributions over the contact site, the dependence of the compressing force on the displacements of rigid plates, and the dependence of the invariant J 2 on the coordinate along the symmetry axis. If 640 computation points are chosen on the cylinder boundary and the Hertz law for the normal pressure on the contact site is used, then the error in the approximate solution near the endpoint of the contact site is approximately 55%, and if the proposed two-parameter normal law is used, then the error is of the order of 4%. On the free lateral surface of the cylinder boundary, we find the critical pointM*, which separates the cylinder contraction and extension parts.The contact problems are the most difficult problems, and their solution is complicated by the discontinuous boundary conditions [1–5]. In [6], the contact problem is solved by the Fourier method, which can be used only for bodies of classical shapes. In such cases, the problem can be reduced to solving coupled integral equations [7]. The interaction between the bandage and a cylindrical body is considered in [2, 6, 7]. In [8], the possibility of using the finite element method is investigated in the case of contact problems for a differential wheel with roughness of the contacting surfaces taken into account. In [9, 10], the method of homogeneous solutions is used to consider contact problems for a finite-dimensional elastic cylinder loaded on its end surfaces. Note that only error estimates are given in the literature cited above; the absolute error over the entire domain of the elastic body is not studied, although this is one of the important characteristics of the obtained approximate solution. A sufficiently complete survey of the literature in the field of contact interactions of elastic bodies is given in [3–5].In what follows, we propose to solve contact problems by the angular superposition method [11]. This method can be used for bodies of nonclassical shapes, which can be multiply connected, and the friction on the contact site can be taken into account. In the present paper, as a first example of applied character, we show how this method can be used in the simplest case. The multiple connectedness and the curvilinearity of the shape of the body, as well as taking into account the friction on the boundary, do not create new essential difficulties in this method.  相似文献   

13.
We analyze the spatial motion of a rigid body fixed to a cable about its center of mass when the orbital cable system is unrolling. The analysis is based on the integral manifold method, which permits separating the rigid body motion into the slow and fast components. The motion of the rigid body is studied in the case of slow variations in the cable tension force and under the action of various disturbances.We estimate the influence of the static and dynamic asymmetry of the rigid body on its spatial motion about the cable fixation point. An example of the analysis of the rigid body motion when the orbital cable system is unrolling is given for a special program of variations in the cable tension force. The conditions of applicability of the integral manifold method are analyzed.  相似文献   

14.
For an arbitrary rigid body, all dynamical symmetry points are found, and the directions of the axes of dynamical symmetry are determined for these points. We obtain conditions on the principal central moments of inertia under which the Lagrange and Kovalevskaya cases can be realized for the rigid body. We also analyze the set of orientations of the bases formed by the principal axes of inertia for various points of the rigid body.  相似文献   

15.
We study an idealized model of body–vortex interaction in two dimensions. The fluid is incompressible and inviscid and assumed to occupy the entire unbounded plane except for a simply connected region representing a rigid body. There may be a constant circulation around the body. The fluid also contains a finite number of point vortices of constant circulation but is otherwise irrotational. We assign a mass distribution to the body and let it move and rotate freely in response to the force and torque exerted by the fluid. Conversely, the fluid moves in response to the body motion. We study the occurrence of chaos in the system of ODEs emerging from these assumptions. It is well-known that the system consisting of a circular body with uniform mass distribution interacting with a single point vortex is integrable. Here we investigate how this integrability breaks down when the body center-of-mass is displaced from its geometrical center. We find two distinct regions of chaos and discuss how they relate to the topology of the trajectories of body and vortex.  相似文献   

16.
The strain and fracture of plates under the action of a load normal to their planes was studied in numerous papers. A review of publications in this field in the case of impact by a freely flying body is given in [1–3]. At first, researchers’ attention was mainly paid to the so-called ideal version of collision in which the normal impact of a rigid body on the plate center was considered and the boundary conditions did not affect the results of impact. The plate strains were studied near and in the region of impact, the minimal velocities were determined for a body of some specific shape for which the plate is punched through (the so-called ballistic limit); the shapes of fractured punched plates and the residual velocity of the body if its initial velocity exceeds the ballistic limit were also determined. In the last years, the more complicated cases of collision have been studied, namely, the case in which the impact is not directed along the normal to the plate plane and the impact velocity vector does not coincide with the body symmetry axis as well as the case of impacts on shells. The research in this field was represented in [2, 3]. But in this case the influence of the boundary conditions is still considered insufficiently. This gap was indicated in [2].In the present paper, we study the normal impacts of spherical bodies and deformable cylindrical bodies with spherical heads on circular plates for various boundary conditions and mechanical characteristics of their material. We consider the plate strains, determine the impact velocity at which the plate is punched through, and clarify the mechanism and the sequence of the plate fracture and break-though depending on their mechanical characteristics and boundary conditions. We make an attempt to perform numerical studies of the dynamic deflection at the center of a plate fixed on the boundary using its experimentally determined quasistatic rigidity and taking into account the boundary conditions for determining the associated mass. We estimate the influence of the body mass on the ballistic limit. The use of rigid spherical bodies permits treating any variations in the results of impacts as a characteristic reaction of the plates themselves, because in this case it is unnecessary to deal with the body orientation with respect to the velocity vector. For impacts with such bodies, we used plates made of aluminum alloys and of lead. We studied how the strength of cylindrical bodies with spherical heads made of plasticine or lead affects the strain of plates made of AMTsM alloy.  相似文献   

17.
The stress-strain state of an elastic piezoceramic halfspace under the action of a rigid elliptical die with a convex base is considered, in the case where the symmetry axis of the body is in the direction of the preliminary-polarization field. The contact area is within the isotropy plane. Attention is confined to the case of die translation. Expressions are obtained for the semimajor axis and eccentricity of the contact area and the translational points of the die base under different electric boundary conditions. S. P. Timoshenko Institute of Mechanics, National Academy of Sciences of Ukraine, Kiev, Ukraine. Translated from Prikladnaya Mekhanika, Vol. 35, No. 6, pp. 17–26, June, 1999.  相似文献   

18.
The problem of the subsonic axisymmetric flow of a compressible viscous perfect gas in the wake behind a cylindrical body with a flat base section is considered under the condition that the stream parameters are given at infinity and at some distance xw upstream of the base section. (Let us note that the possibility of the existence of an axisymmetric wake at moderate Reynolds numbers has been shown experimentally [1].) The problem is solved by the numerical build-up method in a cylindrical x, y coordinate system on the basis of the Navier-Stokes equations, by a method elucidated in [2, 3]. Equations obtained from the fundamental system by a passage to the limit while taking into account the symmetry conditions on the axis y=0 are used on the axis of symmetry.  相似文献   

19.
The problem of unsteady deformation of an elastic half-plane is considered whose surface is impacted, at an initial instant, by a blunt-nosed rigid body, which generates diverging unsteady elastic waves and deforms the medium. The corresponding initial-boundary-value problem is formulated whose solution is constructed for the early stage of the interaction. The integral Laplace transform in the time variable and the integral Fourier transform in the one of the spatial variables are used. The solution of the problem is obtained in terms of the transforms and a formal solution is constructed in terms of the original functions. For a body with a fixed contact region, an analytical expression of the normal stress at an arbitrary point of the half-plane as a function of time is obtained. For a body shaped as an obtuse-angled wedge, analytical expressions of the normal stress and displacement at an arbitrary point at the symmetry axis of the problem are obtained. Calculations are performed and used to analyze the characteristic features of the wave processes in the medium as functions of time, the surface distance, and the mechanical properties of the material.  相似文献   

20.
The fundamental solution for the axi-symmetrictranslational motion of a microstretch fluid due to a concentrated point body force is obtained.A general formula for thedrag force exerted by the fluid on an axi-symmetric rigid particle translating in it is then deduced.As an application to theobtained drag formula,this paper has discussed the problemof creeping translational motion of a rigid sphere in a microstretch fluid.The slip boundary condition on the surfaceof the spherical particle is applied.The drag force and theother physical quantities are obtained and represented graphically for various values of the micropolarity and slip parameters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号