首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 33 毫秒
1.
In this work a gyroscope using a ferrofluidic mass as inertial mass is presented. The device consists of a glass plate filled with deionized water with an injected ferrofluidic drop, a electromagnetic driving system to move the ferrofluidic mass back and forward along the actuation axis and a differential inductive readout system to sense the motion of the ferrofluidic sphere. An angular rate imposed to the device produces a deviation of the ferrofluidic mass trajectory which is measured by the differential readout system. Experimental surveys have been performed to characterize both the driving system and the behavior of the device.  相似文献   

2.
The magnetic actuation of deposited drops has mainly relied on volume forces exerted on the liquid to be transported, which is poorly efficient with conventional diamagnetic liquids such as water and oil, unless magnetosensitive particles are added. Herein, we describe a new and additive‐free way to magnetically control the motion of discrete liquid entities. Our strategy consists of using a paramagnetic liquid as a deformable substrate to direct, using a magnet, the motion of various floating liquid entities, ranging from naked drops to liquid marbles. A broad variety of liquids, including diamagnetic (water, oil) and nonmagnetic ones, can be efficiently transported using the moderate magnetic field (ca. 50 mT) produced by a small permanent magnet. Complex trajectories can be achieved in a reliable manner and multiplexing potential is demonstrated through on‐demand drop fusion. Our paramagnetofluidic method advantageously works without any complex equipment or electric power, in phase with the necessary development of robust and low‐cost analytical and diagnostic fluidic devices.  相似文献   

3.
Magnetic liquid marbles have recently attracted extensive attention for various potential applications. However, conventional liquid marbles based on iron oxide nanoparticles are opaque and inadequate for photo‐related applications. Herein, we report the first development of liquid marbles coated with magnetic lanthanide‐doped upconversion nanoparticles (UCNPs) that can convert near‐infrared light into visible light. Apart from their excellent magnetic and mechanical properties, which are attractive for repeatable tip opening and magnetically directed movements, the resultant UCNP‐based liquid marbles can act as ideal miniature reactors for photodynamic therapy of cancer cells. This work opens new ways for the development of liquid marbles, and shows great promise for liquid marbles based on UCNPs to be used in a large variety of potential applications, such as photodynamic therapy for accelerated drug screening, magnetically guided controlled drug delivery and release, and multifunctional actuation.  相似文献   

4.
In this study, we present for the first time the observations of a freezing liquid marble. In the experiment, liquid marbles are gently placed on the cold side of a thermo-electric cooler (TEC), and the morphological changes are recorded and characterized thereafter. These liquid marbles are noticed to undergo a shape transition from a spherical to a flying-saucer-shaped morphology. The freezing dynamics of liquid marbles is observed to be very different from that of a freezing water droplet on a superhydrophobic surface. For example, the pointy tip appearing on a frozen water drop could not be observed for a frozen liquid marble. In the end, we highlight a possible explanation of the observed morphology.  相似文献   

5.
A sessile drop is an isolated drop which has been deposited on a solid substrate where the wetted area is limited by a contact line and characterized by contact angle, contact radius and drop height. Diffusion-controlled evaporation of a sessile drop in an ambient gas is an important topic of interest because it plays a crucial role in many scientific applications such as controlling the deposition of particles on solid surfaces, in ink-jet printing, spraying of pesticides, micro/nano material fabrication, thin film coatings, biochemical assays, drop wise cooling, deposition of DNA/RNA micro-arrays, and manufacture of novel optical and electronic materials in the last decades. This paper presents a review of the published articles for a period of approximately 120 years related to the evaporation of both sessile drops and nearly spherical droplets suspended from thin fibers. After presenting a brief history of the subject, we discuss the basic theory comprising evaporation of micrometer and millimeter sized spherical drops, self cooling on the drop surface and evaporation rate of sessile drops on solids. The effects of drop cooling, resultant lateral evaporative flux and Marangoni flows on evaporation rate are also discussed. This review also has some special topics such as drop evaporation on superhydrophobic surfaces, determination of the receding contact angle from drop evaporation, substrate thermal conductivity effect on drop evaporation and the rate evaporation of water in liquid marbles.  相似文献   

6.
Experimental studies were performed on the contact line motion of a suspension of PS particles on a glass surface. The base liquids were silicone oil and glycerin. The particle size was in the range of 1-6 μm and the particle loading was 0.5-5 vol %. The drop shape was determined by using a drop image and its reflection and the drop outline was traced to the subpixel level. The Tanner-Voinov-Hoffman relation was valid for suspensions as well as for pure liquids. Silicone oil suspensions showed almost no noticeable change compared with the pure fluid. Glycerin suspensions showed an increase in contact line speed at low particle loading. The difference was due to the microstructure change at the contact line region, and the microstructure change was originated from the wetting characteristics of particles. Particle alignment occurred during the spreading stage for partially wetting particles. The contact line showed a stop-and-go fashioned motion due to surface irregularities. This result can be used as the boundary condition at the contact line in the numerical simulation of suspension spreading.  相似文献   

7.
The behavior of liquid marbles encapsulated with various powders, immersed in oil, and exposed to a uniform DC field was investigated. At some critical value of the electric field, the Taylor instability of the marble shape took place, accompanied by the appearance of a cone and jetting a small droplet. The squared critical electric field was linear dependent on inverse of the size parameter of the marble. In some cases, the extrapolation of this linear dependence to the zero field gave the finite value of the spherical marble radius corresponding to the Rayleigh limit that meant that the marbles were charged. Lycopodium-coated marbles remained neutral under the action of a DC field, as well as a pure water droplet. Therefore, charging marbles is determined by their powder coverage. The data on effective surface tension at marble–oil interfaces were extracted from the above linear dependence for the uncharged marble. The effective surface tension was measured in parallel by the capillary rise method.  相似文献   

8.
The coalescence-induced condensate drop motion on some superhydrophobic surfaces (SHSs) has attracted increasing attention because of its potential applications in sustained dropwise condensation, water collection, anti-icing, and anticorrosion. However, an investigation of the mechanism of such self-propelled motion including the factors for designing such SHSs is still limited. In this article, we fabricated a series of superhydrophobic copper surfaces with nanoribbon structures using wet chemical oxidation followed by fluorization treatment. We then systematically studied the influence of surface roughness and the chemical properties of as-prepared surfaces on the spontaneous motion of condensate drops. We quantified the "frequency" of the condensate drop motion based on microscopic sequential images and showed that the trend of this frequency varied with the nanoribbon structure and extent of fluorination. More obvious spontaneous condensate drop motion was observed on surfaces with a higher extent of fluorization and nanostructures possessing sufficiently narrow spacing and higher perpendicularity. We attribute this enhanced drop mobility to the stable Cassie state of condensate drops in the dynamic dropwise condensation process that is determined by the nanoscale morphology and local surface energy.  相似文献   

9.
Little attention has been paid to the participation of the shell of silica‐particle‐based liquid marbles and their influence on chemical reactions. The fabrication of liquid marbles with the encapsulating particle shells not only act as protecting layers to provide a confined environment, but also provide the reactive substrate surfaces to regulate the classical silver mirror reaction. Fabrication of silver mirrors with different morphologies was achieved by modifying particle surface properties, which could further lead to Janus liquid marbles. The different evaporation behavior of microreactors was demonstrated. Micrometer‐sized silica particles were used for the preparation of monolayer‐stabilized liquid marbles, which show great potential in fabricating Janus particles from superhydrophobic particles that are not attainable from Pickering emulsions.  相似文献   

10.
The formation of liquid marbles was studied in the situation where hydrophobic particles coating the marbles "come from air". Droplets of water/ethanol solutions of various concentrations were coated with three kinds of powders: polytetrafluoroethylene, polyvinylidene fluoride and polyethylene. We established that there exists a critical concentration of ethanol, and correspondingly a critical surface tension of the water/ethanol solution allowing formation of liquid marbles. A critical surface tension depends on the kind of the powder. In parallel, wetting transitions of water/ethanol solutions were studied on the layers of the same polymer powders. The onset of wetting transitions on the powders took place at the concentrations of ethanol coinciding with those enabling the formation of liquid marbles. Wetting transitions stipulate the formation of liquid marbles when a droplet is deposited on a layer of hydrophobic powder. This assumption was validated by the experiments performed with di-iodomethane and glycerol.  相似文献   

11.
Submicrometer-sized pH-responsive sterically stabilized polystyrene (PS) latex particles were synthesized by dispersion polymerization in isopropyl alcohol with a poly[2-(diethylamino)ethyl methacrylate]- (PDEA-) based macroinitiator. These PDEA-PS latexes were extensively characterized with respect to their particle size distribution, morphology, chemical composition, and pH-responsive behavior. Millimeter- and centimeter-sized "liquid marbles" with aqueous volumes varying between 15 μL and 2.0 mL were readily prepared by rolling water droplets on the dried PDEA-PS latex powder. The larger liquid marbles adopted nonspherical shapes due to gravitational forces; analysis of this deformation enabled the surface tension to be estimated. Scanning electron microscopy and fluorescence microscopy studies indicated that flocs of the PDEA-PS particles were adsorbed at the surface of these water droplets, leading to stable liquid marbles. The relative mechanical integrity of the liquid marbles prepared from alkaline aqueous solution (pH 10) was higher than those prepared from acidic aqueous solution (pH 2) as judged by droplet roller experiments. These liquid marbles exhibited long-term stability (over 1 h) when transferred onto the surface of liquid water, provided that the solution pH of the subphase was above pH 8. In contrast, the use of acidic solutions led to immediate disintegration of these liquid marbles within 10 min, with dispersal of the PDEA-PS latex particles in the aqueous solution. Thus the critical minimum solution pH required for long-term liquid marble stability correlates closely with the known pK(a) value of 7.3 for the PDEA stabilizer chains. Stable liquid marbles were also successfully prepared from aqueous Gellan gum solution and glycerol.  相似文献   

12.
Hysteresis of wetting, like the Coulombic friction at solid/solid interface, impedes the motion of a liquid drop on a surface when subjected to an external field. Here, we present a counterintuitive example, where some amount of hysteresis enables a drop to move on a surface when it is subjected to a periodic but asymmetric vibration. Experiments show that a surface either with a negligible or high hysteresis is not conducive to any drop motion. Some finite hysteresis of contact angle is needed to break the periodic symmetry of the forcing function for the drift to occur. These experimental results are consistent with simulations, in which a drop is approximated as a linear harmonic oscillator. The experiment also sheds light on the effect of the drop size on flow reversal, where drops of different sizes move in opposite directions due to the difference in the phase of the oscillation of their center of mass.  相似文献   

13.
The ability to simulate the 3D structure of a human body is essential to increase the efficiency of drug development. In vivo conditions are significantly different in comparison to in vitro conditions. A standardly used cell monolayer on tissue culture plastic (2D cell culture) is not sufficient to simulate the transfer phenomena occurring in living organisms, therefore, cell growth in a 3D space is desired. Drug absorption, distribution, metabolism, excretion and toxicity could be tested on 3D cell aggregates called spheroids, decrease the use of animal models and accelerate the drug development. In this work, the formation of spheroids from HT-29 human colorectal adenocarcinoma cells was successfully achieved by means of the so-called liquid marbles, which are liquid droplets encapsulated by a hydrophobic powder. During the cultivation in the medium inside the liquid marbles, cells spontaneously formed spherical agglomerates (spheroids) without the need of any supporting scaffold. The study focused on the influence of different parameters—namely liquid marble volume, seeding cell density and time of cultivation—on the final yield and quality of spheroids. This work has shown that using liquid marbles as microbioreactors is a suitable method for the cultivation of HT-29 cells in the form of spheroids.  相似文献   

14.
Wetting and absorption of water drops on Nafion films   总被引:1,自引:0,他引:1  
Water drops on Nafion films caused the surface to switch from being hydrophobic to being hydrophilic. Contact angle hysteresis of >70 degrees between advancing and receding values were obtained by the Wilhelmy plate technique. Sessile drop measurements were consistent with the advancing contact angle; the sessile drop contact angle was 108 degrees . Water drop adhesion, as measured by the detachment angle on an inclined plane, showed much stronger water adhesion on Nafion than Teflon. Sessile water and methanol drops caused dry Nafion films to deflect. The flexure went through a maximum with time. Flexure increased with contact area of the drop, but was insensitive to the film thickness. Methanol drops spread more on Nafion and caused larger film flexure than water. The results suggest that the Nafion surface was initially hydrophobic but water and methanol drops caused hydrophilic sulfonic acid domains to be drawn to the Nafion surface. Local swelling of the film beneath the water drop caused the film to buckle. The maximum flexure is suggested to result from motion of a water swelling front through the Nafion film.  相似文献   

15.
The influence of uniform constant magnetic and electric fields, acting simultaneously, on a magnetic fluid drop is theoretically investigated. The drop is suspended in another magnetic fluid that is immiscible with the former. Both fluids are regarded as incompressible, viscous, weakly electrically conducting, polarizable, and magnetizable. The relative orientation of electric and magnetic intensity vectors is arbitrary. The equation for the surface of the drop is obtained in the approximation of small distortion of the drop. It is shown that the surface is an ellipsoid whose semiaxes can be expressed in terms of the intensity vectors of the electric and magnetic fields. The relations determining the orientation of its principal axes are also obtained. Copyright 2001 Academic Press.  相似文献   

16.
Vibration-actuated drop motion on surfaces for batch microfluidic processes   总被引:1,自引:0,他引:1  
When a liquid drop is subjected to an asymmetric lateral vibration on a nonwettable surface, a net inertial force acting on the drop causes it to move. The direction and velocity of the drop motion are related to the shape, frequency, and amplitude of vibration, as well as the natural harmonics of the drop oscillation. Aqueous drops can be propelled through fluidic networks connecting various unit operations in order to carry out batch processing at the miniature scale. We illustrate the integration of several unit operations on a chip: drop transport, mixing, and thermal cycling, which are precursor steps to carrying out advanced biological processes at microscale, including cell sorting, polymerase chain reaction, and DNA hybridization.  相似文献   

17.
Solution movements during the existence of polarographic maxima have been made evident by suspending carbon black in the solution. Only upward motion is observed with maxima occurring on the negative side of the electrocapillary zero. Both upward and downward motion occur with positive maxima. Examples are found in which both upward and downward motion occur during the life of a single drop. Upward motion is associated with the early life of the drop during which the rate of surface growth is greater and also with drops having a shorter life time and hence a greater growth rate. For the two ions Fe(CN)6-3, and Cu+2, a critical ratio of concentration to growth rate exists below which upward motion prevails and above which downward motion prevails. The motions and their directions are considered due in part to the negative character of the mercury surface as it leaves the glass capillary, the time interval for the mercury surface to lose its negative orientation, and the attraction of the ions of the solution by the non-uniformly charged surface.  相似文献   

18.
Results from experiments performed on the motion of drops of tetraethylene glycol in a wettability gradient present on a silicon surface are reported and compared with predictions from a recently developed theoretical model. The gradient in wettability was formed by exposing strips cut from a silicon wafer to dodecyltrichlorosilane vapors. Video images of the drops captured during the experiments were subsequently analyzed for drop size and velocity as functions of position along the gradient. In separate experiments on the same strips, the static contact angle formed by small drops was measured and used to obtain the local wettability gradient to which a drop is subjected. The velocity of the drops was found to be a strong function of position along the gradient. A quasi-steady theoretical model that balances the local hydrodynamic resistance with the local driving force generally describes the observations; possible reasons for the remaining discrepancies are discussed. It is shown that a model in which the driving force is reduced to accommodate the hysteresis effect inferred from the data is able to remove most of the discrepancy between the observed and predicted velocities.  相似文献   

19.
Liquid marbles have potential to serve as mini-reactors for fabricating new materials, but this has been exploited little and mostly for conventional chemical reactions. Here, we uncover the unparalleled capability of liquid marbles to act as platforms for controlling the self-assembly of a bio-derived polymer, hydroxypropyl cellulose, into a cholesteric liquid crystalline phase showing structural coloration by Bragg reflection. By adjusting the cholesteric pitch via quantitative water extraction, we achieve liquid marbles that we can tailor for structural color anywhere in the visible range. Liquid marbles respond with color change that can be detected by eye, to changes in temperature, exposure to toxic chemicals and mechanical deformation. Our concept demonstrates the advantages of using liquid marbles as a miniature platform for controlling the liquid crystal self-assembly of bio-derived polymers, and their exploitation to fabricate sustainable, responsive soft photonic objects.  相似文献   

20.
Lipase Immobilized in Organic-Inorganic Matrices   总被引:1,自引:0,他引:1  
Enzyme lipase was immobilized with ferrite powder and deposited in layers on glass slides from lipase to a solution of silicone alkoxides. The highest hydrolytical activity was observed with the magnetic lipase prepared by mixing the paste of ferrite powder and lipase with tetramethoxysilane, 3-aminopropyltriethoxysilane and propyltrimethoxysilane. In a mixed reactor, the particles of the magnetic lipase were desintegrated by mechanical stirring which caused loosing the lipase linked to magnetic material and resulted in a significant drop of activity after magnetic separation. Transparent layers were prepared by dip- or spin-coating from partially hydrolyzed tetraethoxysilane and solutions containing methyltriethoxysilane with 3-aminopropyltriethoxysilane or tetraethoxysilane with 3-mercaptopropyltriethoxysilane. The lipases immobilized in films with magnetic particles were active in tests with 4-nitrophenyl butyrate and were not inhibited by 0,0-dimethyl-0-(2,2-dichlor-vinyl)-phosphate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号