首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
以铝片为基底, 经电化学腐蚀和沸水处理制备了多级微纳米结构; 通过气相沉积和涂油分别制备了超疏水表面、 疏水超润滑(slippery)表面和亲水slippery表面; 探究了表面不同的特殊浸润性(超亲水、 超疏水、 疏水slippery和亲水slippery)对液滴凝结的影响. 结果表明, 超亲水表面的液滴凝结属于膜状冷凝, 超疏水表面和slippery表面的液滴凝结均属于滴状冷凝. 超疏水表面液滴合并时, 合并的液滴会不定向弹离表面. 疏水slippery表面和亲水slippery表面由于表面浸润性的不同导致液滴成核密度和液滴合并的差异, 亲水slippery表面凝结液滴的最大体积远大于疏水slippery表面凝结液滴的最大体积. 4种表面的雾气收集效率由大到小依次为亲水slippery表面>疏水slippery表面>超亲水表面>超疏水表面.  相似文献   

2.
分别以过硫酸钾、 过硫酸铵及氨水为氧化剂, 在铜表面制得纳米结构, 并用十七氟癸基三乙氧基硅烷(FAS-17)进一步氟化处理, 获得了差异化超疏水表面. 比较了不同氧化剂对反应结果的影响, 并分析了氧化反应的历程. 实验结果表明, Cu首先被O2氧化成CuO超薄层, 然后水解变成Cu(OH)2, 并进一步被OH-或NH4OH络合成蓝色溶液. 不同形貌纳米结构是Cu(OH)2在饱和析出过程中沿固定晶面堆砌的结果. 最后对不同纳米结构超疏水表面的耐水蒸气冷凝情况及微观机理进行了分析, 证实只有较密、 较垂直的纳米针结构表面才耐水蒸气冷凝, 即冷凝水滴在其上出现快速自迁移现象.  相似文献   

3.
The stability of superhydrophobic properties of eight plants and four technical surfaces in respect to water condensation has been compared. Contact and sliding angles were measured after application of water drops of ambient temperature (20 degrees C) onto cooled surfaces. Water evaporating from the drops condensed, due to the temperature difference between the drops and the surface, on the cooled samples, forming "satellite droplets" in the vicinity of the drops. Surface cooling to 15, 10, and 5 degrees C showed a gradual decrease of superhydrophobicity. The decrease was dependent on the specific surface architecture of the sample. The least decrease was found on hierarchically structured surfaces with a combination of a coarse microstructure and submicrometer-sized structures, similar to that of the Lotus leaf. Control experiments with glycerol droplets, which show no evaporation, and thus no condensation, were carried out to verify that the effects with water were caused by condensation from the drop (secondary condensation). Furthermore, the superhydrophobic properties after condensation on cooled surfaces from a humid environment for 10 min were examined. After this period, the surfaces were covered with spherical water droplets, but most samples retained their superhydrophobicity. Again, the best stability of the water-repellent properties was found on hierarchically structured surfaces similar to that of the Lotus leaf.  相似文献   

4.
By promoting dropwise condensation of water, nanostructured superhydrophobic coatings have the potential to dramatically increase the heat transfer rate during this phase change process. As a consequence, these coatings may be a facile method of enhancing the efficiency of power generation and water desalination systems. However, the microdroplet growth mechanism on surfaces which evince superhydrophobic characteristics during condensation is not well understood. In this work, the sub-10 μm dynamics of droplet formation on nanostructured superhydrophobic surfaces are studied experimentally and theoretically. A quantitative model for droplet growth in the constant base (CB) area mode is developed. The model is validated using optimized environmental scanning electron microscopy (ESEM) imaging of microdroplet growth on a superhydrophobic surface consisting of immobilized alumina nanoparticles modified with a hydrophobic promoter. The optimized ESEM imaging procedure increases the image acquisition rate by a factor of 10-50 as compared to previous research. With the improved imaging temporal resolution, it is demonstrated that nucleating nanodroplets coalesce to create a wetted flat spot with a diameter of a few micrometers from which the microdroplet emerges in purely CB mode. After the droplet reaches a contact angle of 130-150°, its base diameter increases in a discrete steplike fashion. The droplet height does not change appreciably during this steplike base diameter increase, leading to a small decrease of the contact angle. Subsequently, the drop grows in CB mode until it again reaches the maximum contact angle and increases its base diameter in a steplike fashion. This microscopic stick-and-slip motion can occur up to four times prior to the droplet coalescence with neighboring drops. Lastly, the constant contact angle (CCA) and the CB growth models are used to show that modeling formation of a droplet with a 150° contact angle in the CCA mode rather than in the CB mode severely underpredicts both the drop formation time and the average heat transfer rate through the drop.  相似文献   

5.
We investigate contact angle hysteresis on chemically patterned and superhydrophobic surfaces, as the drop volume is quasistatically increased and decreased. We consider both two (cylindrical drops) and three (spherical drops) dimensions using analytical and numerical approaches to minimize the free energy of the drop. In two dimensions, we find, in agreement with other authors, a slip, jump, stick motion of the contact line. In three dimensions, this behavior persists, but the position and magnitude of the contact line jumps are sensitive to the details of the surface patterning. In two dimensions, we identify analytically the advancing and receding contact angles on the different surfaces, and we use numerical insights to argue that these provide bounds for the three-dimensional cases. We present explicit simulations to show that a simple average over the disorder is not sufficient to predict the details of the contact angle hysteresis and to support an explanation for the low contact angle hysteresis of suspended drops on superhydrophobic surfaces.  相似文献   

6.
7.
The motion of ferrofluidic marbles on flat polymer substrates is reported. Nanopowders of polyvinylidene fluoride and gammaFe2O3 were used for the preparation of ferrofluidic marbles. The marbles are activated easily with an external magnetic field. A microfluidic device based on ferrofluidic marbles (the ferrofluidic bearing) is described. Velocities of marbles as high as 25+/-3 cm/s were registered. The sliding of ferrofluidic drops on superhydrophobic surfaces was studied. It was demonstrated that the threshold magnetic force necessary for the drop displacement depends linearly on the drop radius, thus the motion of the drop is defined by the processes occurring in the vicinity of the triple line only.  相似文献   

8.
超疏水表面微纳二级结构对冷凝液滴最终状态的影响   总被引:1,自引:0,他引:1  
从超疏水表面(SHS)上初始冷凝液核长大、合并、形成初始液斑开始,分析计算了冷凝液斑变形成为Wenzel或Cassie液滴过程中界面能量的变化,并以界面能曲线降低、是否取最小值为判据,确定冷凝液滴的最终稳定状态.计算结果表明:在只有微米尺度的粗糙结构表面上,冷凝液滴的界面能曲线一般都是先降低再升高,呈现Wenzel状态;而当表面具有微纳米二级粗糙结构,且纳米结构的表面空气面积分率较高时,冷凝液滴的能量曲线持续降低,直至界面能最小的Cassie状态,因此可以自发地形成Cassie液滴.还计算了文献中具有不同结构参数的SHS上冷凝液滴的状态和接触角,并与实验结果进行了比较,结果表明,计算的冷凝液滴状态与实验观察结果完全吻合.因此,微纳二级结构是保持冷凝液滴在SHS上呈现Cassie状态的重要因素.  相似文献   

9.
Condensation on rough or superhydrophobic substrates can induce wetting behavior that is quite different from that of deposited or impinging drops. We investigate the growth dynamics of water drops in a well-controlled condensation chamber on a model rough hydrophobic surface made of square pillars. After having followed growth laws similar to those observed on flat surfaces, a transition to an air-pocket-like state occurred because of the bridging of the drops between the pillars. Another transition to the more stable Wenzel state is later ensured by a noticeable pillar self-drying process. Condensation ends up in a few large drops in a mixed Wenzel penetration regime. The drops are fed by neighboring channels and the adjacent pillars stay almost dry, a remarkable and seemingly general property of rough hydrophobic substrates.  相似文献   

10.
A surface roughening method by simple chemical etching was developed for the fabrication of superhydrophobic surfaces on three polycrystalline metals, namely aluminum, copper, and zinc. The key to the etching technique was the use of a dislocation etchant that preferentially dissolves the dislocation sites in the grains. The etched metallic surfaces, when hydrophobized with fluoroalkylsilane, exhibited superhydrophobic properties with water contact angles of larger than 150 degrees, as well as roll-off angles of less than 10 degrees for 8-microL drops. Also, the dislocation etching concept introduced here may be helpful in the fabrication of superhydrophobic surfaces on other polycrystalline substrates.  相似文献   

11.
We explore numerically the feasibility of using chemical patterning to control the size and polydispersity of micrometer-scale drops. The simulations suggest that it is possible to sort drops by size or wetting properties by using an array of hydrophilic stripes of different widths. We also demonstrate that monodisperse drops can be generated by exploiting the pinning of a drop on a hydrophilic stripe. Our results follow from using a lattice Boltzmann algorithm to solve the hydrodynamic equations of motion of the drops and demonstrate the applicability of this approach as a design tool for micofluidic devices with chemically patterned surfaces.  相似文献   

12.
When placed on an inclined solid plane, drops often stick to the solid surface due to pinning forces caused by contact angle hysteresis. When the drop size or the plane's incline angle is small, the drop is difficult to slide due to a decrease in gravitational force. Here we demonstrate that small drops (0.4-9 μL) on a slightly inclined plane (~12°, Teflon and parylene-C surface) can be mobilized through patterned electrodes by applying low-frequency ac electrowetting under 400 Hz (110-180 V(rms)), which has a mechanism different from that of the high-frequency ac method that induces sliding by reducing contact angle hysteresis. We attribute the sliding motion of our method to a combination of contact angle hysteresis and interfacial oscillation driven by ac electrowetting instead of the minimization of contact angle hysteresis at a high frequency. We investigated the effects of ac frequency on the sliding motion and terminal sliding of drops; the terminal sliding velocity is greatest at resonance frequency. Varying the electrowetting number (0.21-0.56) at a fixed frequency (40 Hz) for 5 μL drops, we found an empirical relationship between the electrowetting number and the terminal sliding velocity. Using the relationship between the drop size and ac frequency, we can selectively slide drops of a specific size or merge two drops along an inclined plane. This simple method will help with constructing microfluidic platforms with sorting, merging, transporting, and mixing of drops without a programmable control of electrical signals. Also, this method has a potential in heat transfer applications because heat removal capacity can be enhanced significantly through drop oscillation.  相似文献   

13.
The commonly used sessile drop method for measuring contact angles and surface tension suffers from errors on superhydrophobic surfaces. This occurs from unavoidable experimental error in determining the vertical location of the liquid-solid-vapor interface due to a camera's finite pixel resolution, thereby necessitating the development and application of subpixel algorithms. We demonstrate here the advantage of a pendant bubble in decreasing the resulting error prior to the application of additional algorithms. For sessile drops to attain an equivalent accuracy, the pixel count would have to be increased by 2 orders of magnitude.  相似文献   

14.
In this paper, we study equilibrium three-dimensional shapes of drops on hysteretic surfaces. We develop a function coupled with the publicly available surface energy minimization code Surface Evolver to handle contact angle hysteresis. The function incorporates a model for the mobility of the triple line into Surface Evolver. The only inputs to the model are the advancing and receding contact angles of the surface. We demonstrate this model’s versatility by studying three problems in which parts of the triple line advance while other parts either recede or remain stationary. The first problem focuses on the three-dimensional shape of a static pendant drop on a vertical surface. We predict the finite drop volume when impending sliding motion is observed. In the second problem, we examine the equilibrium shapes of coalescing sessile drops on hysteretic surfaces. Finally, we study coalescing puddles in which gravity plays a leading role in determining the equilibrium puddle shape along with hysteresis.  相似文献   

15.
Gravity-induced sagging can amplify variations in goniometric measurements of the contact angles of sessile drops on super-liquid-repellent surfaces. The very large value of the effective contact angle leads to increased optical noise in the drop profile near the solid-liquid free surface and the progressive failure of simple geometric approximations. We demonstrate a systematic approach to determining the effective contact angle of drops on super-repellent surfaces. We use a perturbation solution of the Bashforth-Adams equation to estimate the contact angles of sessile drops of water, ethylene glycol, and diiodomethane on an omniphobic surface using direct measurements of the maximum drop width and height. The results and analysis can be represented in terms of a dimensionless Bond number that depends on the maximum drop width and the capillary length of the liquid to quantify the extent of gravity-induced sagging. Finally, we illustrate the inherent sensitivity of goniometric contact angle measurement techniques to drop dimensions as the apparent contact angle approaches 180°.  相似文献   

16.
We present a lattice Boltzmann solution of the equations of motion describing the spreading of droplets on topologically patterned substrates. We apply it to model superhydrophobic behavior on surfaces covered by an array of micrometer-scale posts. We find that the patterning results in a substantial increase in contact angle, from 110 degrees to 156 degrees. The dynamics of the transition from drops suspended on top of the posts to drops collapsed in the grooves is described.  相似文献   

17.
Many natural superhydrophobic structures have hierarchical two-tier roughness which is empirically known to promote robust superhydrophobicity. We report the wetting and dewetting properties of two-tier roughness as a function of the wettability of the working fluid, where the surface tension of water/ethanol drops is tuned by the mixing ratio, and compare the results to one-tier roughness. When the ethanol concentration of deposited drops is gradually increased on one-tier control samples, the impalement of the microtier-only surface occurs at a lower ethanol concentration compared to the nanotier-only surface. The corresponding two-tier surface exhibits a two-stage wetting transition, first for the impalement of the microscale texture and then for the nanoscale one. The impaled drops are subsequently subjected to vibration-induced dewetting. Drops impaling one-tier surfaces could not be dewetted; neither could drops impaling both tiers of the two-tier roughness. However, on the two-tier surface, drops impaling only the microscale roughness exhibited a full dewetting transition upon vibration. Our work suggests that two-tier roughness is essential for preventing catastrophic, irreversible wetting of superhydrophobic surfaces.  相似文献   

18.
Surfaces may be rendered superhydrophobic by engineering the surface morphology to control the extent of the liquid-air interface and by the use of low-surface-energy coatings. The droplet state on a superhydrophobic surface under static and dynamic conditions may be explained in terms of the relative magnitudes of the wetting and antiwetting pressures acting at the liquid-air interface on the substrate. In this paper, we discuss the design and fabrication of hollow hybrid superhydrophobic surfaces which incorporate both communicating and noncommunicating air gaps. The surface design is analytically shown to exhibit higher capillary (or nonwetting) pressure compared to solid pillars with only communicating air gaps. Six hybrid surfaces are fabricated with different surface parameters selected such that the Cassie state of a droplet is energetically favorable. The robustness of the surfaces is tested under dynamic impingement conditions, and droplet dynamics are explained using pressure-based transitions between Cassie and Wenzel states. During droplet impingement, the effective water hammer pressure acting due to the sudden change in the velocity of the droplet is determined experimentally and is found to be at least 2 orders of magnitude less than values reported in the literature. The experiments show that the water hammer pressure depends on the surface morphology and capillary pressure of the surface. We propose that the observed reduction in shock pressure may be attributed to the presence of air gaps in the substrate. This feature allows liquid deformation and hence avoids the sudden stoppage of the droplet motion as opposed to droplet behavior on smooth surfaces.  相似文献   

19.
The dynamics of coalescence of two water sessile drops is investigated and compared with the spreading dynamics of a single drop in partially wetting regime. The composite drop formed due to coalescence relaxes exponentially toward equilibrium with a typical relaxation time that decreases with contact angle. The relaxation time can reach a few tenths of seconds and depends also on the drop size, initial conditions, and surface properties (contact angle, roughness). The relaxation dynamics is larger by 5 to 6 orders of magnitude than the bulk hydrodynamics predicts, due to the high dissipation in the contact line vicinity. The coalescence is initiated at a contact of the drops growing in a condensation chamber or by depositing a small drop at the top of neighboring drops with a syringe, a method also used for the studies of the spreading. The dynamics is systematically faster by an order of magnitude when comparing the syringe deposition with condensation. We explain this faster dynamics by the influence of the unavoidable drop oscillations observed with fast camera filming. Right after the syringe deposition, the drop is vigorously excited by deformation modes, favoring the contact line motion. This excitation is also observed in spreading experiments while it is absent during the condensation-induced coalescence.  相似文献   

20.
Wetting, evaporative, and pinning strength properties of hydrophilic sites on superhydrophobic, nanostructured surfaces were examined. Understanding these properties is important for surface characterization and designing features in self-cleaning, lotus-leaf-like surfaces. Laser-ablated, hydrophilic spots between 250 mum and 2 mm in diameter were prepared on silicon nanowire (NW) superhydrophobic surfaces. For larger circumference pinning sites, initial contact angle measurements resemble the contact angle of the surface within the pinning site: 65-69 degrees . As the drop volume is increased, the contact angles approach the contact angle of the NW surface without pinning sites: 171-176 degrees . The behavior of water droplets on the pinning sites is governed by how much of the water droplet is being influenced by the superhydrophobic NW surfaces versus the hydrophilic areas. During the evaporation of sinapic acid solution, drops are pinned by the spots except for the smaller circumference sites. Pinning strengths of the hydrophilic sites are a linear function of the pinning spot circumference. Protein samples prepared and deposited on the pinning sites for analysis by matrix-assisted laser desorption ionization indicate an improvement in sensitivity from that of a standard plate analysis by a factor of 5.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号