首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Transparent carbon nanotube coatings   总被引:1,自引:0,他引:1  
Thin networks of carbon nanotubes (CNTs) are sprayed onto glass or plastic substrates in order to obtain conductive transparent coatings. Transparency and conductivity at room temperature of different CNT material are evaluated. CNT coatings maintain their properties under mechanical stress, even after folding the substrate. At a transparency of 90% for visible light we observe a surface resistivity of 1 kΩ/sq which is already a promising value for various applications.  相似文献   

2.
An investigation of the effects of substrate type and various treatments on carbon nanotubes (CNT) growth, using an evaporated Ni thin film as a catalyst, is presented. Barrier layers of SiO2, Si3N4, and TiN on Si were used as substrates. The catalyst-insulating substrate systems have been processed in several gaseous atmospheres (Ar, NH3 and H2) and in the temperature range 700–900 °C, in order to obtain the most appropriate morphology, size and density of catalyst particles as seeds for the subsequent CNT growth. On this kind of substrates, the smallest nanoparticles were obtained on SiO2 layers, in H2 or NH3 atmosphere even at 700 °C. However, the best vertically aligned and well-graphitized CNT resulted from the NH3 annealing process, followed by the CNT deposition at 900 °C in C2H2 and H2.On TiN conducting substrates, the best vertically aligned CNT were deposited using a shorter annealing step and a deposition process at reduced pressure. The samples were characterized by means of scanning electron microscopy (SEM) and Raman spectroscopy analysis.  相似文献   

3.
We experimentally evaluate the electrical properties of carbon nanotube (CNT)-network transistors before and after 60Co gamma-ray irradiation up to 50 kGy in an air environment. When the total dose is increased, the degree of the threshold voltage (Vth) shift towards positive gate voltages in the drain current–gate voltage (IDVGS) characteristics decreases for total irradiation doses above 30 kGy, although it is constant below 30 kGy. From our analysis of the IDVGS characteristics along with micro-Raman spectroscopy, the gamma-ray irradiation does not change the structure of the CNT network channel for total doses up to 50 kGy; it instead generates charge traps near the CNT/SiO2 gate insulator interfaces. These traps are located within the SiO2 layer and/or the adsorbate on the device surface. The positively charged traps near the CNT/SiO2 interface contribute less to the Vth shift than the interface dipoles at the CNT/metal electrode interfaces and the segment of the CNT network channel below doses of 30 kGy, while the contribution of the charge traps increases for total doses above 30 kGy. Our findings indicate the possibility of the application of CNT-network transistors as radiation detectors suitable for use in air for radiation doses above 30 kGy.  相似文献   

4.
Convergent Beam Electron Diffraction (CBED) experiments and simulations associated with Finite Element calculations were performed in order to measure strain and stress in a complex device such as periodic MOS transistors with a spatial resolution of about 2 nm and a sensitivity that could reach 50 MPa. A lamella of a thickness of about 475 nm was extracted from the wafer with the transistors by Focus Ion Beam (FIB) and was observed in cross-section in a Transmission Electron Microscope (TEM). When approaching the transistors, the HOLZ lines of the CBED patterns acquired in the silicon substrate, become broader and broader. This HOLZ line broadening, which is due to the stress relaxation in the thin foil, was used to determine quantitatively the strain and stress in the lamella and then in the bulk device. We showed that this procedure could be applied to a complex device. Two parameters, the intrinsic material strains – or equivalently the intrinsic material stresses – in the nickel silicide (NiSi) and nitride (Si3N4) layers on the top of the transistors gate, were successfully fitted by trial and error, in the procedure.  相似文献   

5.
Field emission properties of carbon nanotube field emission cathodes (CNT-FECs) produced using composite plating are studied. The experiment uses a CNT suspension and electroless Ni plating bath to carry out composite plating. The CNTs were first purified by an acid solution, dispersed in a Ni electrobath, and finally co-deposited with Ni on glass substrates to synthesize electrically conductive films. Field emission scanning electron microscopy and Raman spectroscopy results show that the field emission characteristics and graphitic properties of CNT-FECs depend on the pH value of the electrobath. Experiments show that the optimum electrobath pH value is 5.4, achieving a field emission current density of 1.0 mA/cm2 at an applied electric field of 1.5 V/μm. The proposed CNT-FECs possess good field emission characteristics and have potential for backlight unit application in liquid crystal displays.  相似文献   

6.
We report characterization of ZnO thin-film transistors (TFTs) on glass substrates fabricated by pulsed laser deposition (PLD). ZnO films were characterized by X-ray diffraction (XRD), atomic force microscopy and Hall effect measurements. The XRD results showed high c-axis-oriented ZnO(0002) diffraction corresponding to the wurtzite phase. Moreover, the crystallization and the electrical properties of ZnO thin films grown at room temperature are controllable by PLD growth conditions such as oxygen gas pressure. The ZnO films are very smooth, with a root-mean-square roughness of 1 nm. From the Hall effect measurements, we have succeeded in fabricating ZnO films on glass substrates with an electron mobility of 21.7 cm2/V s. By using the ZnO thin film grown by two-step PLD and a HfO2 high-k gate insulator, a transconductance of 24.1 mS/mm, a drain current on/off ratio of 4.4×106 and a subthreshold gate swing of 0.26 V/decade were obtained for the ZnO TFT.  相似文献   

7.
Thin films of molybdenum oxide (MoO3) is one of the most interesting layered intercalation materials because of its excellent application in solid state batteries, large-area window and display systems. In recent years there has been considerable interest in variable transmittance electrochromic devices (ECD) based on Li+, H+ and K+ intercalation in transition metal oxide (MoO3) thin films. In the present investigation, thin films of MoO3 were prepared by electron beam evaporation technique on microscopic glass and fluorine doped tin oxide (FTO) coated glass substrates for the application in electrochromic device cells. The compositional stoichiometry of the films was studied by X-ray photoelectron spectroscopy (XPS). The electrochromic nature of the films has been analyzed by inserting H+ ions from the H2SO4 electrolyte solution using the cyclic-voltammetry (CV) technique. We studied the electrochromic device cells (ECD) incorporating an evaporated MoO3 thin films as electrochromic layers. The devices exhibit good optical properties with low transmittance values in the colored state, which make them suitable for large-area window applications. The maximum coloration efficiency of the cell was observed at about 70 cm2/C.  相似文献   

8.
This study addresses the optimization of rf magnetron-sputtered hydrogenated ZnO:Al (HAZO) films as front contacts in microcrystalline silicon solar cells. The front contact of a solar cell has to be highly conductive and highly transparent to visible and infrared radiation. Furthermore, it has to scatter the incident light efficiently in order for the light to be effectively trapped in the underlying silicon layers. In this research, HAZO films were rf-magnetron-sputtered on glass substrates from a ceramic (98 wt% ZnO, 2 wt% Al2O3) target. Various compositions of AZO films on glass substrates were prepared by changing the H2/(Ar + H2) ratio of the sputtering gas. The resulting smooth films exhibited high transparencies (T  85% for visible light including all reflection losses) and excellent electrical properties (ρ = 2.7 × 10−4 Ω · cm). Depending on their structural properties, these films developed different surface textures upon post-deposition etching using diluted hydrochloric acid. The light-scattering properties of these films could be controlled simply by varying the etching time. Moreover, the electrical properties of the films were not affected by the etching process. Therefore, within certain limits, it is possible to optimize the electro-optical and light-scattering properties separately. The microcrystalline silicon (μc-Si:H)-based p–i–n solar cells prepared using these new texture-etched AZO:H substrates showed high quantum efficiencies in the long wavelength range, thereby demonstrating effective light trapping. Using the optimum AZO:H thin-film textured surface, we achieved a p–i–n μc-Si solar cell efficiency of 7.78%.  相似文献   

9.
《Current Applied Physics》2014,14(7):932-935
Thin film transistors (TFTs) with indium–zinc tin-oxide (IZTO) dual-channel layers were fabricated on heavily-doped p-type Si substrates by using a tilted dual-target radio-frequency magnetron sputtering system. The number of oxygen vacancies in the IZTO channel layer decreased with increasing oxygen partial pressure, resulting in a decrease in the conductivity. The threshold voltage (Vth) shifted toward positive gate-source voltage with increasing oxygen partial pressure for the growth of the IZTO layer because of a decrease in the carrier concentration. The Vth, the mobility, the on/off-current ratio, and the subthreshold swing of the dual-channel IZTO TFTs were 3.5 V, 7.1 cm2/V s, 1.3 V/decade, and 8.2 × 106, respectively, which was enhanced by utilizing dual-channel layers consisting of a top channel deposited at a high oxygen partial pressure and a bottom channel deposited at a low oxygen partial pressure.  相似文献   

10.
The undoped and fluorine doped thin films are synthesized by using cost-effective spray pyrolysis technique. The dependence of optical, structural and electrical properties of SnO2 films, on the concentration of fluorine is reported. Optical absorption, X-ray diffraction, scanning electron microscope (SEM) and Hall effect studies have been performed on SnO2:F (FTO) films coated on glass substrates. The film thickness varies from 800 to 1572 nm. X-ray diffraction pattern reveals the presence of cassiterite structure with (2 0 0) preferential orientation for FTO films. The crystallite size varies from 35 to 66 nm. SEM and AFM study reveals the surface of FTO to be made of nanocrystalline particles. The electrical study reveals that the films are degenerate and exhibit n-type electrical conductivity. The 20 wt% F doped film has a minimum resistivity of 3.8 × 10−4 Ω cm, carrier density of 24.9 × 1020 cm−3 and mobility of 6.59 cm2 V−1 s−1. The sprayed FTO film having minimum resistance of 3.42 Ω/cm2, highest figure of merit of 6.18 × 10−2 Ω−1 at 550 nm and 96% IR reflectivity suggest, these films are useful as conducting layers in electrochromic and photovoltaic devices and also as the passive counter electrode.  相似文献   

11.
《Current Applied Physics》2015,15(5):584-587
We investigated ferroelectric characteristics of BiFeO3 (BFO) thin films on SrRuO3 (SRO)/yttria-stabilized zirconia (YSZ)/glass substrates grown by pulsed laser deposition. YSZ buffer layers were employed to grow highly crystallized BFO thin films as well as SRO bottom electrodes on glass substrates. The BFO thin films exhibited good ferroelectric properties with a remanent polarization of 2Pr = 59.6 μC/cm2 and fast switching behavior within about 125 ns. Piezoelectric force microscopy (PFM) study revealed that the BFO thin films have much smaller mosaic ferroelectric domain patterns than epitaxial BFO thin films on Nb:SrTiO3 substrates. Presumably these small domain widths which originated from smaller domain energy give rise to the faster electrical switching behavior in comparison with the epitaxial BFO thin films on Nb:SrTiO3 substrates.  相似文献   

12.
A fast method for preparing of silver particle layers on glass substrates with high application potential for using in surface enhanced Raman spectroscopy (SERS) is introduced. Silver particle layers deposited on glass cover slips were generated in one-step process by reduction of silver nitrate using several reducing agents (ethylene glycol, glycerol, maltose, lactose and glucose) under ultrasonic irradiation. This technique allows the formation of homogeneous layers of silver particles with sizes from 80 nm up to several hundred nanometers depending on the nature of the used reducing agent. Additionally, the presented method is not susceptible to impurities on the substrate surface and it does not need any additives to capture or stabilize the silver particles on the glass surface. The characteristics of prepared silver layers on glass substrate by the above mentioned sonochemical approach was compared with chemically prepared ones. The prepared layers were tested as substrates for SERS using adenine as a model analyte. The factor of Raman signal enhancement reached up to 5·105. On the contrary, the chemically prepared silver layers does not exhibit almost any pronounced Raman signal enhancement. Presented sonochemical approach for preparation of silver particle layers is fast, simple, robust, and is better suited for reproducible fabrication functional SERS substrates than chemical one.  相似文献   

13.
A simple and self-catalytic method has been developed for synthesizing finely patterned ZnO nanorods on ITO-glass substrates under a low temperature of 500 °C. The patterned ZnO nanorod arrays, a unit area is of 400 × 100 μm2, are synthesized via vapor phase transport method. The surface morphology and composition of the as-synthesized ZnO nanorods are characterized by means of scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX). The mechanism of formation of ZnO nanorods is also discussed. The measurement of field emission (FE) reveals that the as-synthesized ZnO nanorods arrays have a turn-on field of 3.3 V/μm at the current density of 0.1 μA/cm2 and a low threshold field of 6.2 V/μm at the current density of 1 mA/cm2. So this approach must have a potential application of fabricating micropatterned oxide thin films used in FE-based flat panel displays.  相似文献   

14.
This paper presents the results of PL spectrum studies for Si nano-clusters in an amorphous silicon matrix. The four amorphous Si layers were prepared by the hot-wire CVD method on glass substrates at a temperature of 250 °C and different filament temperatures in the range of 1650–1950 °C. The joint analysis of PL and X ray diffraction results dependant on technological conditions has been done. PL bands deal with Si nanocrystals and amorphous Si nanoclusters are discussed as well.  相似文献   

15.
Ga-doped ZnO (ZnO:Ga) transparent conductive films were deposited on glass substrates by DC reactive magnetron sputtering. The structural, electrical, and optical properties of ZnO:Ga films were investigated in a wide temperature range from room temperature up to 400 °C. The crystallinity and surface morphology of the films are strongly dependent on the growth temperatures, which in turn exert an influence on the electrical and optical properties of the ZnO:Ga films. The film deposited at 350 °C exhibited the relatively well crystallinity and the lowest resistivity of 3.4 × 10−4 Ω cm. More importantly, the low-resistance and high-transmittance ZnO:Ga films were also obtained at a low temperature of 150 °C by changing the sputtering powers, having acceptable properties for application as transparent conductive electrodes in LCDs and solar cells.  相似文献   

16.
The use of a highly aligned carbon nanotube (CNT) sheet as a multifunctional constituent for liquid crystal (LC) displays and electro-optic LC applications is assessed. The CNT sheet can perform a dual function: one is an alignment layer for LCs, replacing the commonly used rubbed polyimide film, and the other is a transparent conductive layer, taking the place of indium tin oxide. The hydrophobic treatment improved the adhesion quality between aligned CNT bundles and the glass substrate, which helps to preserve the inherently aligned nanogroove morphology of transparent CNT sheets. The test LC display cells, comprising 4-cyano-4′-pentylbiphenyl molecules sandwiched between CNT-sheet-on-glass substrates, demonstrate the operation characteristics comparable to that of the conventional cell under temperature variation and ac electric field of 1?kHz. The results offer a possibility of deploying multifunctional CNT-sheet alignment layers in LC-based devices, especially in the future flexible display applications.  相似文献   

17.
Room temperature and low temperature (120 °C) laser-assisted glass frit bonding of soda-lime glass substrates are accomplished in this work. The locally laser melted bonding showed hermeticity with helium leak rate of <5×10−8 atm cm3 s−1, maintaining its leak rate even after standard climatic cycle tests. Small size devices were bonded at room temperature while larger areas were sealed at the process temperature of 120 °C. The sealing parameters were optimized through response surface methodology that makes the process capable for further development regardless of device size.  相似文献   

18.
Well-ordered nanoporous alumina templates were fabricated by two-step anodization method by applying a constant voltage of 40 V in oxalic acid solution or of 25 V in sulfuric acid solution. The cylindrical pore diameter and pore density of the templates utilized for the carbon nanotube (CNT) growth were 86 ± 5 nm and 1.2 × 1010 cm−2 in oxalic acid solution and 53 ± 1 nm and 3.1 × 1010 cm−2 in sulfuric acid solution, respectively. The CNTs with uniform diameter of 50 ± 10 nm (oxalic acid) and 44 ± 2 nm (sulfuric acid) were grown on the porous alumina template as electrode materials for the electrochemical double layer capacitor (EDLC). The EDLC characteristics were examined by measuring the capacitances from cyclic voltammograms and the charge–discharge curves. The specific capacitances of the CNT electrodes are 30 ± 1 F/g (Φ = 50 ± 10 nm) and 121 ± 5 F/g (Φ = 44 ± 2 nm). The high specific capacitance of the CNT electrode was achieved by using nanoporous alumina templates with the high pore density and the small and uniform pore diameter.  相似文献   

19.
We developed a rollable polymer-stabilized ferroelectric liquid crystal (FLC) display device using thin plastic substrates. In a device using 200-μm-thick substrates which are fastened by polymer walls and networks made by photopolymerization-induced phase separation, disorder of the FLC alignment was caused by exfoliation of these walls in curvature radii of under 30 mm. Otherwise, the uniformity of the FLC alignment was maintained even after a device using 100-μm-thick substrates was bent at a radius of 7 mm. The enhanced bending tolerance does not depend on the FLC alignment direction, and the device could be bent both convexly and concavely without any FLC alignment change. A rollable device with a size of 100 × 100 mm exhibited uniform grayscale display operation between crossed polarizers when bent with a radius of 15 mm.  相似文献   

20.
Glass bottles are generally employed for water sampling because glass is impervious to radon and is not lost during sample storage. On the other hand, glass is fragile and may break, so 1 L High Density PolyEthylene (HDPE) bottles (Thermo Scientific Nalgene) are tested in place of glass vessels employing Big Bottle RAD H2O device (Durridge Company) coupled with RAD7 monitor. The purpose of this calibration is to quantify radon loss during storage in HDPE bottles, evaluate possible radon uptake by known volume of desiccant (Drierite, granular CaSO4) and quantify radon interaction with the rubber and plastic parts of the experimental circuit. These processes have been separately investigated, performing proper experiments for the assessment of their influence on resulting radon data using seven series of solutions at known activity concentrations in the range from 27 to 194 Bq/L. Percent radon loss during storage in 1 L HDPE bottles has been estimated at 0.0045 min−1. Radon absorption by desiccant, expressed as ‘equivalent’ volume of Drierite is 0.673 ± 0.092 L and is somehow independent, within errors, from i) the amount of water already absorbed in Drierite, ii) a recirculation time greater than 30 min and iii) radon concentrations. Radon absorption/desorption from rubber and plastic parts of the experimental device has been assessed as a function of concentration gradient between the inner volume of the circuit and the pores of polymer's. A final algorithm accounting for the above described physical processes has been developed for long runs (2–3 h). A simplified calculation method for short measurements (30 min) is also provided.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号