首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Compound‐specific stable carbon isotope analysis by gas chromatography/combustion/isotope ratio mass spectrometry (GC/C/IRMS) is an important method for the determination of the 13C/12C ratios of biomolecules such as steroids, for a wide range of applications. However, steroids in their natural form exhibit poor chromatographic resolution, while derivatisation adds carbon thereby corrupting the stable isotopic composition. Hydropyrolysis with a sulphided molybdenum catalyst has been shown to defunctionalise the steroids, while leaving their carbon skeleton intact, allowing for the accurate measurement of carbon isotope ratios. The presence of double bonds in unsaturated steroids such as cholesterol resulted in significant rearrangement of the products, but replacing the original catalyst system with one of platinum results in higher conversions and far greater selectivity. The improved chromatographic performance of the products should allow GC/C/IRMS to be applied to more structurally complex steroid hormones and their metabolites. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

2.
A new analytical method is presented for the compound-specific carbon and nitrogen isotope ratio analysis of a thermo-labile nitramine explosive hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) by gas chromatograph coupled to an isotope ratio mass spectrometer (GC-IRMS). Two main approaches were used to minimise thermal decomposition of the compound during gas chromatographic separation: programmed temperature vaporisation (PTV) as an injection technique and a high-temperature ramp rate during the GC run. δ15N and δ13C values of RDX measured by GC-IRMS and elemental analyser (EA)-IRMS were in good agreement within a standard deviation of 0.3‰ and 0.4‰ for nitrogen and carbon, respectively. Application of the method for the isotope analysis of RDX during alkaline hydrolysis at 50°C revealed isotope fractionation factors ε carbon?=??7.8‰ and ε nitrogen?=??5.3‰.  相似文献   

3.
Measurements of carbon and oxygen isotopes of CO2 by continuous flow isotope ratio mass spectrometry are widely used in environmental studies and climate change research. Yet, there are remaining problems associated with the reproducibility of measurements, in particular when high precision is required and/or the amount of sample material is limited. Isotopic fractionations in open splits and nonlinear effects occurring in the mass spectrometer due to different sample amounts alter the results. In this study, we discuss the influence and the origin of these two effects and propose procedures for preventing their impact. Fractionation in the open split can be related to diffusion of CO2 and can lead to shifted δ‐values when measuring a sample gas against a reference gas injected via different open splits. We present a method, where such fractionations can be minimized by adjusting either the position of the capillaries or the flow rates involved or both. The nonlinear peak area dependence of δ13C measurements for small sample sizes can be explained by adsorption/desorption processes in the ionization chamber or its vicinity. For constant amplitudes, the magnitude of the nonlinearity only depends on the amount of CO2 entering the ion source. This nonlinearity can be eliminated by a small additional flux of a conditioning gas fed to the mass spectrometer. The best results were obtained when using carbon monoxide. For the adsorption process in the mass spectrometer we found a fractionation factor of 0.982 ± 0.005 for δ13C and 1.002 ± 0.004 for δ18O. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

4.
Intramolecular 13C composition gives access to new information on the (bio) synthetic history of a given molecule. Isotopic 13C NMR spectrometry provides a general tool for measuring the position-specific 13C content. As an emerging technique, some aspects of its performance are not yet fully delineated. This paper reports on (i) the conditions required to obtain satisfactory trueness and precision for the determination of the internal 13C distribution, and (ii) an approach to determining the “absolute” position-specific 13C content. In relation to (i), a precision of <1% can be obtained whatever the molecule on any spectrometer, once quantitative conditions are met, in particular appropriate proton decoupling efficiency. This performance is a prerequisite to the measurement of isotope fractionation either on the transformed or residual compound when a chemical reaction or process is being studied. The study of the trueness has revealed that the response of the spectrometer depends on the 13C frequency range of the studied molecule, i.e. the chemical shift range. The “absolute value” and, therefore, the trueness of the 13C NMR measurements has been assessed on acetic acid and by comparison to the results obtained on the fragments from COOH and CH3 by isotopic mass spectrometry coupled to a pyrolysis device (GC-Py–irm-MS), this technique being the reference method for acetic acid. Of the two NMR spectrometers used in this work, one gave values that corresponded to those obtained by GC-Py–irm-MS (thus, the “true” value) while the other showed a bias, which was dependent to the range covered by the resonance frequencies of the molecule. Therefore, the former can be used directly for studying isotope affiliations, while the latter can only be used directly for comparative data, for example in authenticity studies, but can also be used to obtain the true values by applying appropriate correction factors. The present study assesses several key protocol steps required to enable the determination of position-specific 13C content by isotopic 13C NMR, irrespective of the NMR spectrometer: parameters to be adjusted, performance test using [1,2-13C2]acetic acid, generation of correction factors.  相似文献   

5.
Amino sugars have been used as biomarkers to assess the relative contribution of dead microbial biomass of different functional groups of microorganisms to soil carbon pools. However, little is known about the dynamics of these compounds in soil. The isotopic composition of individual amino sugars can be used as a tool to determine the turnover of these compounds. Methods to determine the δ13C of amino sugars using gas chromatography/combustion/isotope ratio mass spectrometry (GC/C/IRMS) have been proposed in literature. However, due to derivatization, the uncertainty on the obtained δ13C is too high to be used for natural abundance studies. Therefore, a new high‐performance liquid chromatography/isotope ratio mass spectrometry (HPLC/IRMS) methodology, with increased accuracy and precision, has been developed. The repeatability on the obtained δ13C values when pure amino sugars were analyzed were not significantly concentration‐dependent as long as the injected amount was higher than 1.5 nmol. The δ13C value of the same amino sugar spiked to a soil deviated by only 0.3‰ from the theoretical value. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

6.
The use of stable isotope labelled glucose provides insight into glucose metabolism. The 13C‐isotopic enrichment of glucose is usually measured by gas chromatography/mass spectrometry (GC/MS) or gas chromatography/combustion/isotope ratio mass spectrometry (GC/C/IRMS). However, in both techniques the samples must be derivatized prior to analysis, which makes sample preparation more labour‐intensive and increases the uncertainty of the measured isotopic composition. A novel method for the determination of isotopic enrichment of glucose in human plasma using liquid chromatography/isotope ratio mass spectrometry (LC/IRMS) has been developed. Using this technique, for which hardly any sample preparation is needed, we showed that both the enrichment and the concentration could be measured with very high precision using only 20 µL of plasma. In addition, a comparison with GC/MS and GC/IRMS showed that the best performance was achieved with the LC/IRMS method making it the method of choice for the measurement of 13C‐isotopic enrichment in plasma samples. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

7.
A microwave-powered chemical reaction interface has been installed in a Hewlett-Packard gas chromatograph-mass spectrometer (GC-MS) system (5890 IT gas chromatograph-S971 mass-selective detector). The technical details and optimization strategies are discussed. The evaluation of this new setup is presented, showing detection limits of 1 ng of 13C-, 15N-, and Cl-containing compounds with signal-to-noise ratios greater than or egual to 3. Selective detection was evaluated with a urine sample from a dog dosed with 15N3-midazolam that had been previously analyzed by using a differentially pumped research-level quadrupole mass spectrometer. The results show that the detection of 15N and Cl remains highly selective and the mass-selective detector gives comparable sensitivity to the larger instrument when the latter is operating over a conventional mass range. The capability for chemical reaction interface mass spectrometry can be easily accomplished with an inexpensive GC-MS system.  相似文献   

8.
Capillary gas chromatography coupled to an inductively coupled plasma mass spectrometer with multiple-collector detection (GC–ICP–MCMS) has been used to assess the precision and instrumental mass bias in sulfur isotope-ratio determination for the gaseous sulfur species SF6. The isotopic composition of the compound was certified by the institute for reference materials and measurements (IRMM, Belgium) and is available as PIGS 2010. Integration of the peaks (peak half-width 1.4 s) was performed using a special peak-integration method based on definition of the integration area by assessment of a uniform isotope-ratio area within the chromatographic peak. Instrumental mass bias was determined to be approximately 12% per mass unit and proved to be stable in the concentration range measured. Replicate injections of 2, 10, 20, and 30 ng (as S) SF6 diluted in argon gave precision for the 32S/34S ratio from 0.6% RSD for 2-ng injections to 0.03% RSD for 30-ng injections. The 32S/33S and 33S/34S isotope-ratio precision was better than 0.4% RSD for injections of 10 ng (as S) and higher. Detection limits were in the absolute pg range for all measured sulfur isotopes.  相似文献   

9.
《Analytical letters》2012,45(7):1325-1338
Abstract

This paper presents the capability of using molecules labelled with 13 C and of measuring them by gas chromatography coupled to an MIP. The sensitivity of the detection of this stable carbon isotope has been optimised using non steroid anti inflammatory drugs such as Fenoprofen, Flurbiprofen, Ketoprofen and Diclofenac and applying a four factors experimental design. This work shows that the main factors acting on the sensitivity of the 13 C detection are the flow rates of hydrogen and helium (plasma gas). The linearity was demonstrated in the range from 50 to 300 pg of 13 C. The limit of detection calculated according to various methods (IUPAC, Oppenheimer and Quimby - Sullivan) gave the following results: 2 pg/μl, 12 pg/μl and 0.1 pg/s respectively. These results show that 13 C atomic emission is quite a specific and sensitive mode of detection of 13 C labelled molecules after gas chromatographic separation.  相似文献   

10.
Stable carbon isotopes are a powerful tool to assess the origin and dynamics of carbon in soils. However, direct analysis of the 13C/12C ratio in the dissolved organic carbon (DOC) pool has proved to be difficult. Recently, several systems have been developed to measure isotope ratios in DOC by coupling a total organic carbon (TOC) analyzer with an isotope ratio mass spectrometer. However these systems were designed for the analysis of fresh and marine water and no results for soil solutions or 13C‐enriched samples have been reported. Because we mainly deal with soil solutions in which the difficult to oxidize humic and fulvic acids are the predominant carbon‐containing components, we preferred to use thermal catalytic oxidation to convert DOC into CO2. We therefore coupled a high‐temperature combustion TOC analyzer with an isotope ratio mass spectrometer, by trapping and focusing the CO2 cryogenically between the instruments. The analytical performance was tested by measuring solutions of compounds varying in the ease with which they can be oxidized. Samples with DOC concentrations between 1 and 100 mg C/L could be analyzed with good precision (standard deviation (SD) ≤0.6‰), acceptable accuracy, good linearity (overall SD = 1‰) and without significant memory effects. In a 13C‐tracer experiment, we observed that mixing plant residues with soil caused a release of plant‐derived DOC, which was degraded or sorbed during incubation. Based on these results, we are confident that this approach can become a relatively simple alternative method for the measurement of the 13C/12C ratio of DOC in soil solutions. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

11.
Variation of the isotopic abundance of selected nutrients and molecules has been used for pharmacological and kinetics studies under the premise that the administered molecule has a different isotopic enrichment from the isotopic background of the recipient subject. The aim of this study is to test the feasibility of assessing the contribution of exogenous surfactant phospholipids to the endogenous alveolar pool in vivo after exogenous surfactant replacement therapy in rabbits. The study consisted in measuring the consistency of 13C/12C ratio of disaturated‐phosphatidylcholine palmitate (DSPC‐PA) in 7 lots of poractant alfa, produced over a year, and among bronchoalveolar lavages of 20 rabbits fed with a standard chow. A pilot study was performed in a rabbit model of lavage‐induced surfactant deficiency: 7 control rabbits and 4 treated with exogenous surfactant. The contribution of exogenous surfactant to the alveolar pool was assessed after intra‐tracheal administration of 200 mg/kg of poractant alfa. The 13C content of DSPC‐PA was measured by isotope ratio mass spectrometry. The mean DSPC‐PA 13C/12C ratio of the 7 lots of poractant alfa was −18.8‰ with a SD of 0.1‰ (range: −18.9‰; −18.6‰). The mean 13C/12C ratio of surfactant DSPC recovered from the lung lavage of 20 rabbits was −28.8 ± 1.2‰ (range: −31.7‰; −25.7‰). The contribution of exogenous surfactant to the total alveolar surfactant could be calculated in the treated rabbits, and it ranged from 83.9% to 89.6%. This pilot study describes a novel method to measure the contribution of the exogenous surfactant to the alveolar pool. This method is based on the natural variation of 13C, and therefore it does not require the use of chemically synthetized tracers. This method could be useful in human research and especially in surfactant replacement studies in preterm infants.  相似文献   

12.
A simple and rapid method to measure naturally occurring delta(13)C values of headspace CO(2) of sparkling drinks has been set up, using direct injections on a gas chromatograph coupled to an isotope ratio mass spectrometer, through a combustion interface (GC/C/IRMS). We tested the method on CO(2) gas from several origins. No significant isotopic fractionation was observed nor influences by secondary compounds eventually present in the gas phase. Standard deviation for these measurements was found to be <0.1 per thousand.  相似文献   

13.
Gaseous membrane permeation (MP) technologies have been combined with continuous‐flow isotope ratio mass spectrometry for on‐line δ13C measurements. The experimental setup of membrane permeation‐gas chromatography/combustion/isotope ratio mass spectrometry (MP‐GC/C/IRMS) quantitatively traps gas streams in membrane permeation experiments under steady‐state conditions and performs on‐line gas transfer into a GC/C/IRMS system. A commercial polydimethylsiloxane (PDMS) membrane sheet was used for the experiments. Laboratory tests using CO2 demonstrate that the whole process does not fractionate the C isotopes of CO2. Moreover, the δ13C values of CO2 permeated on‐line give the same isotopic results as off‐line static dual‐inlet IRMS δ13C measurements. Formaldehyde generated from aqueous formaldehyde solutions has also been used as the feed gas for permeation experiments and on‐line δ13C determination. The feed‐formaldehyde δ13C value was pre‐determined by sampling the headspace of the thermostated aqueous formaldehyde solution. Comparison of the results obtained by headspace with those from direct aqueous formaldehyde injection confirms that the headspace sampling does not generate isotopic fractionation, but the permeated formaldehyde analyzed on‐line yields a 13C enrichment relative to the feed δ13C value, the isotopic fractionation being 1.0026 ± 0.0003. The δ13C values have been normalized using an adapted two‐point isotopic calibration for δ13C values ranging from ?42 to ?10‰. The MP‐GC/C/IRMS system allows the δ13C determination of formaldehyde without chemical derivatization or additional analytical imprecision. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

14.
In order to detect small variations in 13C isotopomers concentrations, high sensitivity, accuracy and precision have to be achieved. To assess such criteria, when using 13C NMR, 13C bi-labelled ethanol has been proposed as a molecular probe. Advantage has been taken of the pre-established structural relationship between the peak areas of the 13C NMR spectrum of this molecule, i.e. the ratio of signal areas is set to a fixed value. It is shown that the quality performance, required by quantitative 13C NMR spectroscopy, is not affected by a large reduction of the repetition delay using relaxation reagents.  相似文献   

15.
Despite the relevance of carbon (C) loss through respiration processes (with its consequent effect on the lower C availability for grain filling), little attention has been given to this topic. Literature data concerning the role of respiration in cereals are scarce and these have been produced using indirect methods based on gas‐exchange estimations. We have developed a new method based on the capture of respired CO2 samples and their analysis by gas chromatography‐combustion‐isotope ratio mass spectrometry (GC‐C‐IRMS). In order to analyse the main processes involved in the C balance during grain filling (photosynthesis, respiration, allocation and partitioning) the ambient isotopic 13C/12C composition (δ13C) of the growth chamber was modified during this period (δ13C ca. ?12.8 ± 0.3‰ to ca. ?20.0 ± 0.2‰). The physiological performance, together with the C allocation on total organic matter (TOM) and respiration of wheat (Triticum aestivum L., var. Califa sur) and two hybrids, tritordeum (X Tritordeum Asch. & Graebn line HT 621) and triticale (X Triticosecale Wittmack var. Imperioso), were compared during post‐anthesis water stress. In spite of the larger ear DM/total ratio, especially under drought conditions, the grain filling of triticale and wheat was mainly carried out with pre‐anthesis C, while the majority of C assimilated during post‐anthesis was invested in respiration processes. In the case of wheat and tritordeum, the C balance data suggested a reallocation during grain filling of photoassimilates stored prior to anthesis from shoot to ear. Furthermore, the lower percentage of labeled C on respired CO2 of droughted tritordeum plants, together with the lower plant biomass, explained the fact that those plants had more C available for grain filling. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

16.
Thermal evacuation of a surfactant template from pure siliceous MCM-41 and MCM-41 containing aluminium in hydrogen flow was investigated. Micelle templated MCM-41 were prepared using hexadecyltrimethylammonium bromide (CTAB). The products of thermal surfactant degradation outside and inside pores were identified at various temperatures using 13C solid-state nuclear magnetic resonance (NMR) spectroscopy, gas chromatography coupled with mass spectrometer (GC-MS) and temperature programmed desorption coupled with mass spectrometer (TPD-MS). The GC-MS and 13C MAS NMR results obtained from this study provide an insight into the mechanism of surfactant transformation during MCM-41 synthesis on molecular level.  相似文献   

17.
The review describes on-line derivatization/degradation methods employed in mass spectrometry to solve some structural and analytical problems. Advantages and applications of various positions of reaction systems connected mainly to a mass spectrometer or a gas chromatograph/mass spectrometer are considered. Among these are reaction systems connected directly to the mass spectrometer (reaction mass spectrometry, pyrolysis-mass spectrometry or direct pyrolysis-mass spectrometry); flash-heaters as reactors in gas chromatography/mass spectrometry (GC/MS); in-line chemical reactors located before the chromatographic column [pre-column derivatization/degradation with the use of catalytic reactions, pyrolysis (pyrolysis-GC/MS), degradation in elemental analyzers-isotope ratio mass pectrometry (EA-IRMS)]; on-column derivatization and deuteration; reactor located between the chromatographic column and a mass spectrometer [post-column catalytic derivatization, gas chromatograph-combustion-isotope ratio mass spectrometer (GC-c-IRMS)]. Post-column derivatization in high performance liquid chromatography/mass spectro-metry is briefly mentioned. Application of such on-line methodology to structure elucidation of low molecular mass compounds and polymers, to the determination of isotope ratios of the most common elements, to the investigation of catalytic reactions is discussed..  相似文献   

18.
We present a novel method for the purity assessment of peptide standards which is applicable to any water soluble peptide. The method is based on the online 13C isotope dilution approach in which the peptide is separated from its related impurities by liquid chromatography (LC) and the eluent is mixed post-column with a continuous flow of 13C-enriched sodium bicarbonate. An online oxidation step using sodium persulfate in acidic media at 99 °C provides quantitative oxidation to 12CO2 and 13CO2 respectively which is extracted to a gaseous phase with the help of a gas permeable membrane. The measurement of the isotope ratio 44/45 in the mass spectrometer allows the construction of the mass flow chromatogram. As the only species that is finally measured in the mass spectrometer is CO2, the peptide content in the standard can be quantified, on the base of its carbon content, using a generic primary standard such as potassium hydrogen phthalate. The approach was validated by the analysis of a reference material (NIST 8327), and applied to the quantification of two commercial synthetic peptide standards. In that case, the results obtained were compared with those obtained using alternative methods, such as amino acid analysis and ICP-MS. The results obtained proved the value of the method for the fast, accurate and precise mass purity assignment of synthetic peptide standards.  相似文献   

19.
A commercial interface coupling liquid chromatography (LC) to a continuous‐flow isotope ratio mass spectrometry (CF‐IRMS) instrument was used to determine the δ13C of dissolved organic carbon (DOC) in natural waters. Stream and soil waters from a farmland plot in a hedgerow landscape were studied. Based on wet chemical oxidation of dissolved organics the LC/IRMS interface allows the on‐line injection of small volumes of water samples, an oxidation reaction to produce CO2 and gas transfer to the isotope ratio mass spectrometer. In flow injection analysis (FIA) mode, bulk DOC δ13C analysis was performed on aqueous samples of up to 100 μL in volume in the range of DOC concentration in fresh waters (1–10 mg C.L–1). Mapping the DOC δ13C spatial distribution at the plot scale was made possible by this fairly quick method (10 min for triplicate analyses) with little sample manipulation. The relative contributions of different plot sectors to the DOC pool in the stream draining the plot were tentatively inferred on the basis of δ13C differences between the hydrophilic and hydrophobic components. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

20.
The introduction of liquid chromatography coupled with isotope ratio mass spectrometry (LC/IRMS) as an analytical tool for the measurement of isotope ratios in non‐volatile analytes has somewhat simplified the analytical cycle from sample collection to analysis mainly due to the avoidance of the extensive sample processing and derivatisation that were necessary for gas chromatography/combustion/isotope ratio mass spectrometry (GC/C/IRMS). Here we test the performance of coupling strong anion exchange to IRMS using only the second commercially available interface; the Liquiface. The system was modified from installation specification to improve peak resolution in the interface and maintain peak separation from the column to the mass spectrometer. The system performance was assessed by the determination of sensitivity, accuracy and precision attained from carbohydrate separations. The system performed satisfactorily after modifications, resulting in maintenance of peak resolution from column to mass spectrometer. The sensitivity achieved suggested that ~150 ng carbon could be analysed with acceptable precision (<0.3‰). Accuracy was maintained in the interface as determined by correlation with offline techniques, resulting in regression coefficient of r2 = 0.98 and a slope of 0.99. The average precision achieved for the separation of seven monosaccharides was 0.36‰. The integration of a carbonate removal device limited the effect of background carbon perturbations in the mass spectrometer associated with eluent gradients, and the coupling of strong anion‐exchange chromatography with IRMS was successfully achieved using the Liquiface. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号