首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
The entanglement dynamics of three-qubit states under a general XY spin-chain environment which can exhibit a quantum phase transition is investigated by using negativity as entanglement measure. Our results imply that the entanglement evolution depends not only on the states of concern but also on the system-environment coupling, the anisotropy parameter, the size of the environment, and the strength of the external field applied to the environment. For the cases under study, we find that the entanglement decay is enhanced by quantum phase transition under weak coupling. The conditions to identify quantum decoherence-free subspaces have been discussed.  相似文献   

2.
In this paper, we have investigated the quantum entanglement of quantum states undergoing decoherence from a spin environment which drives a quantum phase transition. From our analysis, we find that the entanglement dynamics depends not only on the coupling strength but also on the external magnetic field and the number of the freedom degrees of the environment. Specially, our results imply that the decay of the entanglement can be enhanced by the quantum phase transition of the environment when the system is coupled to the environment weakly. Additionally, the discussion of the case of the multipartite states with high dimensions is made.  相似文献   

3.
In this paper,we have investigated the quantum entanglement of quantum states undergoing decoherence from a spin environment which drives a quantum phase transition.From our analysis,we find that the entanglement dynamics depends not only on the coupling strength but also on the external magnetic field and the number of the freedom degrees of the environment.Specially,our results imply that the decay of the entanglement can be enhanced by the quantum phase transition of the environment when the system is coupled to the environment weakly.Additionally,the discussion of the case of the multipartite states with high dimensions is made.  相似文献   

4.
The entanglement evolution of multipartite quantum states under a spin environment is analyzed. Due to interaction, the extent to which the entanglement vanishes depends not only on the size of system and the structure of quantum states, but also on the exchange couplings with environment. The decoherence-free subspaces have been identified by using the linear entropy.  相似文献   

5.
We study the dynamics of quantum discord of two-qubit system in a quantum spin environment at finite temperature in the thermodynamics limit. Special attention is paid to the difference between the entanglement and quantum discord when considering the influences of the environment temperature and the initial system states. We show that in the same range of the physical parameters, when the system states behave no entanglement or entanglement sudden death, the quantum discord keeps nonzero. So the quantum discord is more robust than entanglement under this decoherence environment. Furthermore, we also illustrate that we can tune the parameters related to the system and the environment to suppress the decay of quantum discord.  相似文献   

6.
The time evolution of entanglement and coherence of two-qutrit states under an XY quantum environment which can exhibit a quantum phase transition has been analyzed. From our results, we find that the quantum phase transition can enhance the entanglement decay and coherence loss when the system is weakly coupled to the environment. Furthermore, the effect of the anisotropy parameter and the size of the environment on entanglement dynamics and coherence has also been discussed.  相似文献   

7.
The dynamical behaviors of quantum discord between two atoms coupled with a vacuum cavity are investigated. If the two qubits are initially prepared in two extended Werner-like states, the quantum discord and entanglement can be numerically calculated. There are remarkable differences between the time evolutions of the quantum discord and entanglement under the same conditions. These results imply that quantum discord is not zero for some unentangled states and in some regions entanglement can disappear completely. A large amount of quantum discord exists between the two-qubit. Thus, the quantum discord is more robust than entanglement for the quantum system exposed to the environment. The quantum discord shows sudden change and its existence depends on the initial state of the system. This property of quantum discord may have important implications for experimental characterization of quantum phase transitions.  相似文献   

8.
We use the quantum jump approach to study the entanglement dynamics of a quantum register, which is composed of two or three dipole-dipole coupled two-level atoms, interacting with a common environment. Our investigation of entanglement dynamics reflects that the environment has dual actions on the entanglement of the qubits in the model. While the environment destroys the entanglement induced by the coherent dipole-dipole interactions, it can produce stable entanglement between the qubits prepared initially in a separable state. The analysis shows that it is the entangled decoherence-free states contained as components in the initial state that contribute to the stable entanglement. Our study indicates how the environmental noise produces the entanglement and exposes the interplay of environmental noise and coherent interactions of qubits on the entanglement.  相似文献   

9.
本文将两个二能级原子注入一个腔中,用共生纠缠的方法来度量两原子之间的纠缠并推出它们之间的量子失协,还给出了原子与环境之间的共生纠缠与量子失协的计算公式,讨论了原子自发衰变率的变化对量子纠缠及失协的影响,及不同的初始状态情况下,纠缠及失协随原子距离的演化情况。结果表明:原子自发衰变率减小,原子与环境之间的量子纠缠及失协增加;选择不同的初态,可以控制原子间出现纠缠死亡的现象或量子失协为零的状态。  相似文献   

10.
本文将两个二能级原子注入一个腔中,用共生纠缠的方法来度量两原子之间的纠缠并推出它们之间的量子失协,还给出了原子与环境之间的共生纠缠与量子失协的计算公式,讨论了原子自发衰变率的变化对量子纠缠及失协的影响,及不同的初始状态情况下,纠缠及失协随原子距离的演化情况.结果表明:原子自发衰变率减小,原子与环境之间的量子纠缠及失协增加;选择不同的初态,可以控制原子间出现纠缠死亡的现象或量子失协为零的状态.  相似文献   

11.
本文将两个二能级原子注入一个腔中,用共生纠缠的方法来度量两原子之间的纠缠并推出它们之间的量子失协,还给出了原子与环境之间的共生纠缠与量子失协的计算公式,讨论了原子自发衰变率的变化对量子纠缠及失协的影响,及不同的初始状态情况下,纠缠及失协随原子距离的演化情况。结果表明:原子自发衰变率减小,原子与环境之间的量子纠缠及失协增加;选择不同的初态,可以控制原子间出现纠缠死亡的现象或量子失协为零的状态。  相似文献   

12.
We investigate the entanglement dynamics and decoherence of a multipartite system under an environment which can exhibit a quantum phase transition. Our result implies that the entanglement evolution depends not only on the size of the system and the quantum states of concern but also on the environment. In the sense of the linear entropy to measure decoherence induced by the environment, the decoherence-free subspaces have been identified for our model.  相似文献   

13.
We investigate the entanglement dynamics and Bell violation of three-qubit quantum states under an environment consisting of an XY spin chain with Dzyaloshinski–Moriya (DM) interaction. From the results, we find that the entanglement dynamics depends not only on the DM interaction, the magnetic field, and the anisotropy parameter but also on the number of the freedom degrees of the environment. The decoherence-free subspaces of our model have been identified and the Bell violation of quantum states is also discussed.  相似文献   

14.
We study the dynamics of entanglement and quantum discord between two two-level atoms that interact with a common squeezed reservoir. It is shown that the degree of entanglement and quantum discord are very sensitive to the degree of two-photon correlation for large values of the mean photon number. The squeezed vacuum environment can drive the system to a stationary state with high entanglement and quantum discord for certain X-type states. Furthermore, sudden change happens to the dynamics of quantum discord while the entanglement is remained almost unchanged.  相似文献   

15.
逯怀新 《中国物理》2007,16(7):1878-1882
In the measurement-based model of quantum computing, a one-way quantum computer consisting of many qubits can be immersed in a common environment as a simple decoherence mechanism. This paper studies the dynamics of entanglement witness for 3-qubit cluster states in the common environment. The result shows that environment can induce an interesting feature in the time evolution of the entanglement witness: i.e., the periodical collapse and revival of the entanglement dynamics.  相似文献   

16.
K. Le Hur 《Annals of Physics》2008,323(9):2208-2240
The concept of entanglement entropy appears in multiple contexts, from black hole physics to quantum information theory, where it measures the entanglement of quantum states. We investigate the entanglement entropy in a simple model, the spin-boson model, which describes a qubit (two-level system) interacting with a collection of harmonic oscillators that models the environment responsible for decoherence and dissipation. The entanglement entropy allows to make a precise unification between entanglement of the spin with its environment, decoherence, and quantum phase transitions. We derive exact analytical results which are confirmed by Numerical Renormalization Group arguments both for an ohmic and a subohmic bosonic bath. The entanglement entropy obeys universal scalings. We make comparisons with entanglement properties in the quantum Ising model and in the Dicke model. We also emphasize the possibility of measuring this entropy using charge qubits subject to electromagnetic noise; such measurements would provide an empirical proof of the existence of entanglement entropy.  相似文献   

17.
尹少英  刘庆欣  宋杰  许学新  周可雅  刘树田 《中国物理 B》2017,26(10):100501-100501
We investigate the prominent impacts of coupling strengths on the evolution of entanglement and quantum discord for a three-qubit system coupled to an XY spin-chain environment. In the case of a pure W state, more robust, even larger nonzero quantum correlations can be obtained by tailoring the coupling strengths between the qubits and the environment.For a mixed state consisting of the GHZ and W states, the dynamics of entanglement and quantum discord can characterize the critical point of quantum phase transition. Remarkably, a large nonzero quantum discord is generally retained, while the nonzero entanglement can only be obtained as the system-environment coupling satisfies certain conditions. We also find that the impact of each qubit's coupling strength on the quantum correlation dynamics strongly depends on the variation schemes of the system-environment couplings.  相似文献   

18.
We provide a detailed analysis of the dynamics of entanglement and quantum correlations for one-parameter qubit-qutrit states under independent or common classical noises influence. Namely the static noise, the Ornstein-Uhlenbeck (OU) noise and the random telegraph noise. Independently of the intrinsic features of the noises, entanglement measured by negativity and quantum correlations measured by measured-induced disturbance (MID) vanish after a finite time under the effects of independent noise environments. In a common environment setup, we show the existence of specific and very important features of perfect insulation of the systems quantum properties from noise effects, for suitable range of the entanglement parameter. We refer these phenomena to as frozen entanglement and frozen quantum correlations. The dichotomy between entanglement (separability) and quantum correlations is strengthened by our results, with the robustness of MID over entanglement and existence of separable qubit-qutrit states with non-zero quantum correlations.  相似文献   

19.
Based on the algebraic entanglement measure proposed [G. Vidal et al., Phys. Rev. A 65 (2002) 032314],we study the entanglement evolution of both pure quantum states and mixed ones of 2-qutrit system in a symmetrybroken environment consisting of a fermionic bath. Entanglement of states will decrease or remain constant under the influence of environment, and the class of states which remain unchanged has been found out.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号