首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Protein tyrosine nitration is associated with oxidative stress and various human diseases. Tandem mass spectrometry has been the method of choice for the identification and localization of this posttranslational modification to understand the underlying mechanisms and functional consequences. Due to the electron predator effect of the nitro group limiting fragmentation of the peptide backbone, electron‐based dissociation has not been applicable, however, to nitrotyrosine‐containing peptides. A straightforward conversion of the nitrotyrosine to the aminotyrosine residues is introduced to address this limitation. When tested with nitrated ubiquitin and human serum albumin as model proteins in top‐down and bottom‐up approaches, respectively, this chemical derivatization enhanced backbone fragmentation of the corresponding nitroproteins and nitropeptides by electron capture dissociation (ECD). Increased sequence coverage has been obtained by combining in the bottom‐up strategy the conversion of nitrotyrosine to aminotyrosine and introducing, in addition to trypsin, a further digesting enzyme of complementary specificity, when protein nitration was mapped by liquid chromatography–electrospray ionization tandem mass spectrometry using both collision‐induced dissociation (CID) and ECD. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

2.
Protein tyrosine nitration (PTN) is a post-translational modification of proteins associated with a number of inflammatory diseases. While PTN is rather selective (not all proteins are modified and within a protein, only certain tyrosines are subject to nitration), no consensus sequence has been identified. Since PTN is a low-abundance post-translational modification, it is necessary to enrich modified proteins and/or to detect them with high selectivity and sensitivity. Until now this has been mostly accomplished with anti-nitrotyrosine antibodies in combination with two-dimensional gel electrophoresis and mass spectrometry. We propose a chemical labeling approach designed to allow enrichment of tyrosine-nitrated peptides independent of the sequence context, which is a potential shortcoming of antibody-based approaches. In this procedure, all amines are blocked by acetylation followed by conversion of nitrotyrosine to aminotyrosine and biotinylation of aminotyrosine. The entire reaction sequence is performed in a single buffer with no need for sample cleanup or pH changes thereby reducing sample loss. Free biotin is subsequently removed with a strong cation exchanger, the labeled peptides are enriched on an immobilized avidin column and the enriched peptides analyzed by LC-MS/MS. As a proof of concept, this method was successfully applied to the enrichment of tyrosine-nitrated angiotensin II in a tryptic digest of bovine serum albumin (BSA). The approach presented here is well adapted to peptide analysis, for instance in shotgun proteomics.  相似文献   

3.
Electron capture dissociation (ECD) and collision-induced dissociation (CID), the two complementary fragmentation techniques, are demonstrated to be effective in the detection and localization of the methionine sulfoxide [Met(O)] residues in peptides using Fourier transform ion cyclotron resonance (FTICR) mass spectrometry. The presence of Met(O) can be easily recognized in the low-energy CID spectrum showing the characteristic loss of methanesulfenic acid (CH(3)SOH, 64 Da) from the side chain of Met(O). The position of Met(O) can then be localized by ECD which is capable of providing extensive peptide backbone fragmentation without detaching the labile Met(O) side chain. We studied CID and ECD of several Met(O)-containing peptides that included the 44-residue human growth hormone-releasing factor (GRF) and the human atrial natriuretic peptide (ANP). The distinction and complementarity of the two fragmentation techniques were particularly remarkable in their effects on ANP, a disulfide bond-containing peptide. While the predominant fragmentation pathway in CID of ANP was the loss of CH(3)SOH (64 Da) from the molecular ion, ECD of ANP resulted in many sequence-informative products, including those from cleavages within the disulfide-bonded cyclic structure, to allow for the direct localization of Met(O) without the typical procedures for disulfide bond reduction followed by [bond]SH alkylation.  相似文献   

4.
The fragmentation behavior of nitrated and S-nitrosylated peptides were studied using collision induced dissociation (CID) and metastable atom-activated dissociation mass spectrometry (MAD-MS). Various charge states, such as 1+, 2+, 3+, 2–, of modified and unmodified peptides were exposed to a beam of high kinetic energy helium (He) metastable atoms resulting in extensive backbone fragmentation with significant retention of the post-translation modifications (PTMs). Whereas the high electron affinity of the nitrotyrosine moiety quenches radical chemistry and fragmentation in electron capture dissociation (ECD) and electron transfer dissociation (ETD), MAD does produce numerous backbone cleavages in the vicinity of the modification. Fragment ions of nitrosylated cysteine modifications typically exhibit more abundant neutral losses than nitrated tyrosine modifications because of the extremely labile nature of the nitrosylated cysteine residues. However, compared with CID, MAD produced between 66% and 86% more fragment ions, which preserved the labile –NO modification. MAD was also able to differentiate I/L residues in the modified peptides. MAD is able to induce radical ion chemistry even in the presence of strong radical traps and therefore offers unique advantages to ECD, ETD, and CID for determination of PTMs such as nitrated and S-nitrosylated peptides.  相似文献   

5.
Vitamin K-dependent carboxylation of glutamic acid (Glu) residues into γ-carboxyglutamic acid (Gla) is a post-translational modification essential for normal protein activity of, for example, proteins involved in the blood coagulation system. These proteins may contain as many as 12 sites for γ-carboxylation within a protein sequence of 45 amino acid residues. In the biopharmaceutical industry, powerful analytical techniques are required for identification and localization of modified sites. We here present comparatively easy and rapid methods for studies of Gla-containing proteins using recent technology. The performances of two mass spectrometric fragmentation techniques, collision-induced dissociation (CID) and electron transfer dissociation (ETD), were evaluated with respect to γ-carboxylated peptides, applying on-line LC-ion trap MS. ETD MS has so far not been reported for Gla-containing peptides and the applicability of CID for heavily γ-carboxylated proteins has not been evaluated. The anticoagulant protein, protein C, containing nine Gla-sites, was chosen as a model protein. After tryptic digestion, three peptides containing Gla-residues were detected by MS; a 1.2 kDa fragment containing two Gla-residues, a 4.5 kDa peptide containing seven residues and also the 5.6 kDa tryptic peptides containing all nine Gla-residues. Regarding the shortest peptide, both CID and ETD provided extensive peptide sequencing. For the larger peptides, fragmentation by CID resulted in loss of the 44 Da CO(2)-group, while little additional fragmentation of the peptide chain was observed. In contrast, ETD resulted in comprehensive fragmentation of the peptide backbone. The study demonstrates that the combination of both techniques would be beneficial and complementary for investigation of γ-carboxylated proteins and peptides.  相似文献   

6.
Strategies are reported that combine in one step a predictable chemical-based protein digestion with mass spectrometry. Lysine residue amino groups in peptides and proteins are modified by reaction with a peroxycarbonate derived from p-nitrophenol, and tert-butyl hydroperoxide. The peroxycarbonate reacts with lysine residues in peptides and proteins, and the resulting lysine peroxycarbamates undergo homolytic fragmentation under conditions of low-energy collision-induced dissociation (CID). Observed fragmentation of the peptides involves apparent free radical processes including Hofmann-L?ffler-type rearrangements that lead to peptide chain fragmentation. Strategies for directed cleavage of peptides by free radical promoted processes are feasible, and such strategies may well simplify schemes for protein analysis.  相似文献   

7.
An improved method of de novo peptide sequencing based on mass spectrometry using novel N-terminal derivatization reagents with high proton affinity has been developed. The introduction of a positively charged group into the N-terminal amino group of a peptide is known to enhance the relative intensity of b-ions in product ion spectra, allowing the easy interpretation of the spectra. However, the physicochemical properties of charge derivatization reagents required for efficient fragmentation remain unclear. In this study, we prepared several derivatization reagents with high proton affinity, which are thought to be appropriate for peptide fragmentation under low-energy collision-induced dissociation (CID) conditions, and examined their usefulness in de novo peptide sequencing. Comparison of the effects on fragmentation among three derivatization reagents having a guanidino or an amidino moiety, which differ in proton affinity, clearly indicated that there was an optimal proton affinity for efficient fragmentation of peptides. Among reagents tested in this study, derivatization with 4-amidinobenzoic acid brought about the most effective fragmentation. This derivatization approach will offer a novel de novo peptide sequencing method under low-energy CID conditions.  相似文献   

8.
We have examined the multi-stage collision induced dissociation (CID) of metal cationized leucine enkephalin, leucine enkephalin amide, and the N-acetylated versions of the peptides using ion trap mass spectrometry. In accord with earlier studies, the most prominent species observed during the multi-stage CID of alkali metal cationized leucine enkephalin are the [b(n) + 17 + Cat]+ ions. At higher CID stages (i.e. >MS(4)), however, dissociation of the [b2 + 17 + Cat]+ ion, a cationized dipeptide, results in the production of [a(n) -1 + Cat]+ species. The multi-stage CID of Ag+ cationized leucine enkephalin can be initiated with either the [b(n) -1 + Ag]+ or [b(n) + 17 + Ag]+ ions produced at the MS/MS stage. For the former, sequential CID stages cause, in general, the loss of CO, and then the loss of the imine of the C-terminal amino acid, to reveal the amino acid sequence. Similar to the alkali cationized species, CID of [b2 -1 + Ag]+ produces prominent [a(n) -1 + Ag]+ ions. The multi-stage CID of argentinated peptides is reminiscent of fragmentation observed for protonated peptides, in that a series of (b(n)) and (a(n)) type ions are generated in sequential CID stages. The Ag+ cation is similar to the alkali metals, however, in that the [b(n) + 17 + Ag]+ product is produced at the MS/MS and MS3 stages, and that sequential CID stages cause the elimination of amino acid residues primarily from the C-terminus. We found that N-acetylation of the peptide significantly influenced the fragmentation pathways observed, in particular by promoting the formation of more easily interpreted (in the context of unambiguous sequence determination) dissociation spectra from the [b2 + 17 + Li]+, [b2 + 17 + Na]+ and [b2 -1 + Ag]+ precursor ions. Our results suggest, therefore, that N-acetylation may improve the efficacy of multi-stage CID experiments for C-terminal peptide sequencing in the gas phase. For leucine enkephalin amide, only the multi-stage CID of the argentinated peptide allowed the complete amino acid sequence to be determined from the C-terminal side.  相似文献   

9.
In vivo nitration of tyrosine residues is a post-translational modification mediated by peroxynitrite that may be involved in a number of diseases. The aim of this study was to evaluate possibilities for site-specific detection of tyrosine nitration by mass spectrometry. Angiotensin II and bovine serum albumin (BSA) nitrated with tetranitromethane (TNM) were used as model compounds. Three strategies were investigated: (i) analysis of single peptides and protein digests by matrix-assisted laser desorption/ionization (MALDI) peptide mass mapping, (ii) peptide mass mapping by electrospray ionization (ESI) mass spectrometry and (iii) screening for nitration by selective detection of the immonium ion of nitrotyrosine by precursor ion scanning with subsequent sequencing of the modified peptides. The MALDI time-of-flight mass spectrum of nitrated angiotensin II showed an unexpected prompt fragmentation involving the nitro group, in contrast to ESI-MS, where no fragmentation of nitrated angiotensin II was observed. The ESI mass spectra showed that mono- and dinitrated angiotensin II were obtained after treatment with TNM. ESI-MS/MS revealed that the mononitrated angiotensin II was nitrated on the side-chain of tyrosine. The dinitrated angiotensin II contained two nitro groups on the tyrosine residue. Nitration of BSA was confirmed by Western blotting with an antibody against nitrotyrosine and the sites for nitration were investigated by peptide mass mapping after in-gel digestion. Direct mass mapping by ESI revealed that two peptides were nitrated. Precursor ion scanning for the immonium ion for nitrotyrosine revealed two additional partially nitrated peptides. Based on the studies with the two model compounds, we suggest that the investigation of in vivo nitration of tyrosine and identification of nitrated peptides might be performed by precursor ion scanning for the specific immonium ion at m/z 181.06 combined with ESI-MS/MS for identification of the specific nitration sites.  相似文献   

10.
Electron-transfer dissociation (ETD) is a useful peptide fragmentation technique that can be applied to investigate post-translational modifications (PTMs), the sequencing of highly hydrophilic peptides, and the identification of large peptides and even intact proteins. In contrast to traditional fragmentation methods, such as collision-induced dissociation (CID), ETD produces c- and z·-type product ions by randomly cleaving the N–Cα bonds. The disappointing fragmentation efficiency of ETD for doubly charged peptides and phosphopeptide ions has been improved by ETcaD (supplemental activation). However, the ETD data derived from most database search algorithms yield low confidence scores due to the presence of unreacted precursors and charge-reduced ions within MS/MS spectra. In this work, we demonstrate that eight out of ten standard doubly charged peptides and phosphopeptides can be effortlessly identified by electron-transfer coupled with collision-induced dissociation (ET/CID) using the SEQUEST algorithm without further spectral processing. ET/CID was performed with the further dissociation of the charge-reduced ions isolated from ETD ion/ion reactions. ET/CID had high fragmentation efficiency, which elevated the confidence scores of doubly charged peptide and phosphospeptide sequencing. ET/CID was found to be an effective fragmentation strategy in “bottom-up” proteomic analysis.  相似文献   

11.
A kinetic peptide fragmentation model for quantitative prediction of peptide CID spectra in an ion trap mass spectrometer has been reported recently. When applying the model to predict the CID spectra of large peptides, it was often found that the predicted spectra differed significantly from their experimental spectra, presumably due to noncovalent interactions in these large polypeptides, which are not considered in the fragmentation model. As a result, site-specific quantitative information correlated to the secondary/tertiary structure of an ionized peptide may be extracted from its CID spectrum. To extract this information, the kinetic peptide fragmentation model was modified by incorporating conformation-related parameters. These parameters are optimized for best fit between the predicted and the experimental spectrum. A conformational stability map is then generated from these conformation-related parameters. Analysis of a few bioactive alpha-helical peptides including melittin, glucagon and neuropeptide Y by this technique demonstrated that their stability maps in the gas phase correlate strongly to their secondary structures in the condensed phases.  相似文献   

12.
Protein identification is routinely accomplished by peptide sequencing using mass spectrometry (MS) after enzymatic digestion. Site-specific chemical modification may improve peptide ionization efficiency or sequence coverage in mass spectrometry. We report herein that amino group of lysine residue in peptides can be selectively modified by reaction with a peroxycarbonate and the resulting lysine peroxycarbamates undergo homolytic fragmentation under conditions of low-energy collision-induced dissociation (CID) in electrospray ionization (ESI) and matrix-assisted laser desorption and ionization (MALDI) MS. Selective modification of lysine residue in peptides by our strategy can induce specific peptide cleavage at or near the lysine site. Studies using deuterated analogues of modified lysine indicate that fragmentation of the modified peptides involves apparent free-radical processes that lead to peptide chain fragmentation and side-chain loss. The formation of a-, c-, or z-types of ions in MS is reminiscent of the proposed free-radical mechanisms in low-energy electron capture dissociation (ECD) processes that may have better sequence coverage than that of the conventional CID method. This site-specific cleavage of peptides by free radical- promoted processes is feasible and such strategies may aid the protein sequencing analysis and have potential applications in top-down proteomics.  相似文献   

13.
Five peptide thioesters of increasing length were fragmented under two processes, in-source and in- collision cell fragmentation, using an electrospray source coupled to a triple quadrupole. Comparison of their fragmentations was made in regard to the length. The two fragmentation conditions show that the peptide length has no influence on structural information and that the fragmentation efficiency is higher for the smallest peptides than for the longest. The particularity of these peptide thioesters consists on the neutral loss of ethanethiol. The absence of the a3 fragment ion and the presence of the (a3-17) ion on the CID mass spectra are noted.  相似文献   

14.
Protein arginine (Arg) methylation serves an important functional role in eucaryotic cells, and typically occurs in domains consisting of multiple Arg in close proximity. Localization of methylarginine (MA) within Arg-rich domains poses a challenge for mass spectrometry (MS)-based methods; the peptides are highly charged under electrospray ionization (ESI), which limits the number of sequence-informative products produced by collision induced dissociation (CID), and loss of the labile methylation moieties during CID precludes effective fragmentation of the peptide backbone. Here the fragmentation behavior of Arg-rich peptides was investigated comprehensively using electron-transfer dissociation (ETD) and CID for both methylated and unmodified glycine-/Arg-rich peptides (GAR), derived from residues 679–695 of human nucleolin, which contains methylation motifs that are widely-represented in biological systems. ETD produced abundant information for sequencing and MA localization, whereas CID failed to provide credible identification for any available charge state (z=2–4). Nevertheless, CID produced characteristic neutral losses that can be employed to distinguish among different types of MA, as suggested by previous works and confirmed here with product ion scans of high accuracy/resolution by an LTQ/Orbitrap. To analyze MA-peptides in relatively complex mixtures, a method was developed that employs nano-LC coupled to alternating CID/ETD for peptide sequencing and MA localization/characterization, and an Orbitrap for accurate precursor measurement and relative quantification of MA-peptide stoichiometries. As proof of concept, GAR-peptides methylated in vitro by protein arginine N-methyltransferases PRMT1 and PRMT7 were analyzed. It was observed that PRMT1 generated a number of monomethylated (MMA) and asymmetric-dimethylated peptides, while PRMT7 produced predominantly MMA peptides and some symmetric-dimethylated peptides. This approach and the results may advance understanding of the actions of PRMTs and the functional significance of Arg methylation patterns.  相似文献   

15.
Despite significant technological and methodological advancements in peptide sequencing by mass spectrometry, analyzing peptides that exhibit only poor fragmentation upon collision-induced dissociation (CID) remains a challenge. A major cause for unfavorable fragmentation is insufficient proton 'mobility' due to charge localization at strongly basic sites, in particular, the guanidine group of arginine. We have recently demonstrated that the conversion of the guanidine group of the arginine side chain by malondialdehyde (MDA) is a convenient tool to reduce the basicity of arginine residues and can have beneficial effects for peptide fragmentation. In the present work, we have focused on peptides that typically yield incomplete sequence information in CID-MS/MS experiments. Energy-resolved tandem MS experiments were carried out on angiotensins and arginine-containing phosphopeptides to study in detail the influence of the modification step on the fragmentation process. MDA modification dramatically improved the fragmentation behavior of peptides that exhibited only one or two dominant cleavages in their unmodified form. Neutral loss of phosphoric acid from phosphopeptides carrying phosphoserine and threonine residues was significantly reduced in favor of a higher abundance of fragment ions. Complementary experiments were carried out on three different instrumental platforms (triple-quadrupole, 3D ion trap, quadrupole-linear ion trap hybrid) to ascertain that the observation is a general effect.  相似文献   

16.
Structural characterization of a glycopeptide is not easily attained through collision‐induced dissociation (CID), due to the extensive fragmentation of glycan moieties and minimal fragmentation of peptide backbones. In this study, we have exploited the potential of electron‐transfer dissociation (ETD) as a complementary approach for peptide fragmentation. Model glycoproteins, including ribonuclease B, fetuin, horseradish peroxidase, and haptoglobin, were used here. In ETD, radical anions transfer an electron to the peptide backbone and induce cleavage of the N–Cα bond. The glycan moiety is retained on the peptide backbone, being largely unaffected by the ETD process. Accordingly, ETD allows not only the identification of the amino acid sequence of a glycopeptide, but also the unambiguous assignment of its glycosylation site. When data acquired from both fragmentation techniques are combined, it is possible to characterize comprehensively the entire glycopeptide. This is being achieved with a mass spectrometer capable of alternating between CID and ETD on‐the‐fly during an LC/MS/MS analysis. This is demonstrated here with several tryptic glycopeptides. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

17.
The conventional protocol for protein identification by electrospray ionization mass spectrometry (MS) is based on enzymatic digestion which renders peptides to be analyzed by liquid chromatography-MS and collision-induced dissociation (CID) multistage MS, in the so-called bottom-up approach. Though this method has brought a significant progress to the field, many limitations, among which, the low throughput and impossibility to characterize in detail posttranslational modifications in terms of site(s) and structure, were reported. Therefore, the research is presently focused on the development of procedures for efficient top-down fragmentation of intact protein ions. In this context, we developed here an approach combining fully automated chip-based-nanoelectrospray ionisation (nanoESI), performed on a NanoMate robot, with electron transfer dissociation (ETD) for peptide and top-down protein sequencing and identification. This advanced analytical platform, integrating robotics, microfluidics technology, ETD and alternate ETD/CID, was tested and found ideally suitable for structural investigation of peptides and modified/functionalized peptides as well as for top-down analysis of medium size proteins by tandem MS experiments of significantly increased throughput and sensitivity. The obtained results indicate that NanoMate-ETD and ETD/CID may represent a viable alternative to the current MS strategies, with potential to develop into a method of routine use for high throughput top-down proteomics.  相似文献   

18.
We report our contribution to the systematic investigation of peptide fragmentations performed on high‐performance Tof equipment, operating in MS and MS/MS modes, such as ESI‐QqTof and MALDI‐Tof/Tof instruments that are commonly available today in proteomic laboratories. Whereas the former analyzer's configuration provides low‐energy collision‐induced dissociations (CID), the latter allows tunable activation methods of the selected parent ion to induce either metastable laser‐induced dissociations (LID) or high‐energy CID (‘gas on spectra LID’). Fragmentation of the monoprotonated ion of 53 peptides (FW 807–2853 g/mol) was undertaken upon low‐energy CID on an ESI‐QTof mass spectrometer (Waters) as well as high‐energy CID and LID conditions on a MALDI Ultraflex mass spectrometer (Bruker). Systematic comparison of MS/MS spectra provided useful information on the performance of each piece of equipment for efficient peptide sequencing and also insights into the observed fragmentation behaviors. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

19.
Electrospray ionization ion trap mass spectrometry has been used to distinguish three pairs of positional isomers of a new series of N-blocked hybrid peptides derived from repeats of phenylalanine(D)-beta3-h-valine/beta3-h-valine-phenylalanine(D) (FbetaV/betaVF) non-natural amino acids. MSn of protonated isomeric peptides produces characteristic fragmentation involving the peptide backbone, the Boc group and the side chain. FbetaV-peptides can be distinguished from betaVF-peptides by the loss of R-OH from [M+H-Boc+H]+, which is either of relatively low abundance or totally absent for the latter peptides. In contrast, betaVF-peptides show abundant Mannich base characteristic ions by the elimination of ammonia, and imine due to a retro-Mannich cleavage. This fragmentation is absent for FbetaV-peptides. When beta-valine is at the C-terminus, abundant b+(n-1) ions are produced. This is ascribed to the probable formation of a stable diketopiperazine structure, and this has been supported by the loss of H2O and CO in the CID spectra of b+(n-1) ions. The hybrid dipeptide acids have also been distinguished in negative ion mass spectrometry.  相似文献   

20.
Bacterial adenosine diphosphate-ribosyltransferases (ADPRTs) are toxins that play a significant role in pathogenicity by inactivating host proteins through covalent addition of ADP-ribose. In this study we used ADP-ribosylated Kemptide (LRRASLG) as a standard to examine the effectiveness of three common tandem mass spectrometry fragmentation methods for assignment of amino acid sequence and site of modification. Fragmentation mechanisms investigated include low-energy collision-induced dissociation (CID), infrared multiphoton dissociation (IRMPD), and electron-capture dissociation (ECD); all were performed on a hybrid linear ion trap Fourier transform ion cyclotron resonance mass spectrometer. We show that ECD, but neither CID nor IRMPD, of ADP-ribosylated Kemptide produces tandem mass spectra that are interpretable with regard to amino acid sequence assignment and site of modification. Examination of CID and IRMPD tandem mass spectra of ADP-ribosylated Kemptide revealed that fragmentation was primarily focused to the ADP-ribose region, generating several potential diagnostic ions for use in discovery of ADP-ribosylated proteins. Because of the lower relative sensitivity of ECD during data-dependent acquisition to CID, we suggest a 2-fold strategy where CID and IRMPD are first used to detect ADP-ribosylated peptides, followed by sequence assignment and location of modification by ECD analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号