首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have recently shown that BiFeO3 has at least four different magnetic phases, contrary to the conventional wisdom. Below room temperature it undergoes spin reorientation transitions at T2=200 K and T1=140 K analogous to those in orthoferrites; and above room temperature it undergoes a structural transition near 185°C first reported by Polomska et al. This may help explain the apparent linear magnetoelectric effect at 20°C reported by D. Lebeugle et al. [Phys. Rev. Lett. 100, 227602 (2008)] which is nominally forbidden due to the long wavelength cycloidal spin structure assumed. We also find evidence of an unusual acentric spin glass below ca. 200 K, related not to TN but to T1 and T2.  相似文献   

2.
Y-type polycrystalline hexagonal ferrites Ba2Co2−xyZnxCuyFe12O22 with 0≤x≤2 and 0≤y≤0.8 were prepared by the mixed-oxide route. Single phase Y-type ferrite powders were obtained after calcinations at 1000 °C. Samples sintered at 1200 °C show a permeability that increases with the substitution of Zn for Co and display maximum permeability of μ′=35 at 1 MHz for x=1.6 and y=0.4. A resonance frequency fr=500 MHz is observed for Zn-rich ferrites with y=0 and 0.4. The saturation magnetization increases with substitution of Zn for Co. Addition of Bi2O3 shifts the temperature of maximum shrinkage down to T≤950 °C. Moreover, an increase of the Cu-concentration further lowers the sintering temperature to T≤900 °C, enabling co-firing of the ferrites with Ag metallization for multilayer technologies. However, low-temperature firing reduces the permeability to μ′=10 and the resonance frequency is shifted to 1 GHz. Thus substituted hexagonal Y-type ferrites can be used as soft magnetic materials for multilayer inductors for high frequency applications.  相似文献   

3.
Silver ion conducting composites of the general formula xAgI : (1 − x)α-Al2O3, where 0.2 ≤ x ≤ 0.8 (vol fraction) were prepared using a high-pressure synthesis route (T = 400 °C, p = 7.5 GPa). The microstructure of as-received rigid, non-brittle and dense samples was investigated by SEM. Other studies — DSC, XRD and impedance spectroscopy, were done as a function of temperature in the 20-200 °C temperature range. Close correlations were observed between the temperature dependences of the XRD patterns, the electrical conductivity and events seen on DSC traces. It was found out that the electrical conductivity at room temperature of all as-received composite materials was higher (by a factor between 7 and 100, depending on composition) than that measured after the heating-cooling cycle. This effect and other observed correlations were explained referring to the residual stress concept.  相似文献   

4.
BiFeO3-CoFe2O4 epitaxial nanocomposites have been deposited on SrTiO3 (0 0 1) substrates by pulsed laser deposition. We present here a study of the influence of the deposition temperature (TS), in the 550-800 °C range, on the film composition, morphology and microstructure. Electron-probe microanalysis shows strong reduction of the Bi content in the films when increasing TS. Films prepared at TS=750 °C and above are virtually Bi-free. X-ray diffraction (XRD) data show that, due to the volatility of Bi, there is a progressive reduction in the amount of BiFeO3. The deposition temperature and the concomitant presence of FexOy spurious phases in the nanocomposites grown at high temperature promote radical changes in film morphology and magnetization. It thus follows that a temperature range suitable for controlled modification of nanocomposites morphology would be extremely narrow.  相似文献   

5.
A series of nano-crystalline CoxAg100−x solid solutions have been prepared by NaBH4 reduction of the corresponding metal salts at room temperature in Ar gas flow. Alloys heat-treated at 600 °C in Ar/H2 (5%) show the evolution of metastable fcc Co precipitates in Ag. Magnetic studies indicate that all the compositions are ferromagnetic with Curie temperatures >400 K. For a nominal composition of Co60Ag40, heat-treated at 600 °C, an effective negative magneto-resistance (MR) ratio of the order of ∼21% at 350 K, at 2 T is observed. This could arise from the influence of magnetic field on the electron–phonon scattering effects near to Tc and to the spin-mixing scattering by magnons.  相似文献   

6.
In this paper, magnetic property and magnetocaloric effect (MCE) in nanoparticles perovskite manganites of the type (La0.67−xGdx)Sr0.33MnO3 (x=0.10, 0.15, 0.20) synthesized by using an amorphous molecular alloy as precursor have been reported. From the magnetic measurements as function of temperature and magnetic applied field, we have discovered that the Curie temperature (TC) of the prepared samples is found to be strongly dependent on Gd content. The Curie temperature of samples is 358.4, 343.2, and 285.9 K for x=0.1, 0.15, and 0.2, respectively. A large magnetocaloric effect close to TC has been observed with a maximum of magnetoentropy change in all the samples, ∣ΔSMmax of 1.96 and 4.90 J/kg K at 2 and 5 T, respectively, for a substitution rate of 0.15. In addition, the maximum magnetic entropy change observed for samples with different concentration of Gd, exhibits a linear dependence with the applied high magnetic field. These results suggest that (La0.67−x Gdx)Sr0.33MnO3 (x=0.10, 0.15, 0.20) compounds could be a suitable candidate as working substance in magnetic refrigeration near room temperature.  相似文献   

7.
Al1−xFexN1−δ thin films with 0 ≤ x ≤ 13.6% were deposited by dc magnetron co-sputtering at room temperature (RT). It is found that Fe atom will substitutes the Al atom in the lattice when x ≤ 1.2%, while it will embed into the interstice of the lattice at larger Fe content. RT ferromagnetism was observed in all doped samples. A maximum saturated magnetization 2.81 emu/cm3 of the film is found to be induced by AlFeN ternary alloy when x = 1.2%.  相似文献   

8.
Single-phase polycrystalline samples of La0.7Sr0.3Mn1-xCrxO3 with nominal composition of x=0.00, 0.20, 0.40 and 0.50 were prepared by a conventional solid-state reaction method in air. Investigations of magnetization were carried out in the temperature range 5-400 K and magnetic field range 0-8 T. It was found that the Curie temperature TC decreases with increasing x and the maximum magnetic entropy change (−ΔSM) for x=0.20 is ∼1.203 and ∼2.653 J/kg K, respectively for 2 and 6 T magnetic field near the temperature of 280 K.  相似文献   

9.
La1−xAgxMnO3 samples were synthesized by standard sol-gel method with Ag concentrations of x=0.05 and 0.25. The samples from each concentration were pressed and sintered at 1000, 1200 and 1400 °C for 24 h in air for a systematic study. They were examined structurally by Atomic Force Microscopy (AFM), Scanning Electron Microscopy (SEM) with Energy Dispersive Spectroscopy (EDS) and X-ray Diffraction (XRD) and magnetically by Magnetic Properties Measurements System (MPMS). AFM and SEM analyses show that surface morphology changes with Ag concentration and sintering temperature (TS). It was observed that high temperature sintering leads Ag to leave material as determined from EDS analyses. XRD spectra exhibited that the crystal structure changes with Ag concentration while showing pronounced change with the sintering temperature. From the magnetic measurements, the Curie temperatures (TC) and the isothermal magnetic entropy changes (−ΔSM) were calculated. It was observed that TC increases with Ag concentration and decreases with TS. The maximum −ΔSM was calculated to be 7.2 J/kg K under the field change of 5 T for the sample sintered at 1000 °C with x=0.25.  相似文献   

10.
The magnetocaloric properties of melt-spun Gd-B alloys were examined with the aim to explore their potential application as magnetic refrigerants near room temperature. A series of Gd100−xBx (x=0, 5, 10, 15, and 20 at%) alloys were prepared by melt spinning. With the decrease in Gd/B ratio, Curie temperature (TC) remains constant at ∼293 K, and saturation magnetization, at 275 K, decreases from ∼100 to ∼78 emu/g. Negligible magnetic hysteresis was observed in these alloys. The peak value of magnetic entropy change, (−ΔSM)max, decreased from ∼9.9 J/kg K (0-5 T) and ∼5.5 J/kg K (0-2 T) for melt-spun Gd to ∼7.7 J/kg K (0-5 T) and ∼4.0 J/kg K (0-2 T), respectively for melt-spun Gd85B15 and Gd80B20 alloys. Similarly, the refrigeration capacity (q) decreased monotonously from ∼430 J/kg (0-5 T) for melt-spun Gd to ∼330 J/kg (0-5 T) for melt-spun Gd80B20 alloy. The near room temperature magnetocaloric properties of melt-spun Gd100−xBx (0≤x≤20) alloys were found to be comparable to few first-order transition based magnetic refrigerants.  相似文献   

11.
The study of the structural and magnetic phase diagram of the manganites La1−xAgxMnO3 shows similarity with the La1−xSrxMnO3 series, involving a metallic ferromagnetic domain at relatively high temperature (≈300 K). The Ag-system differs from the Sr-one by a much smaller homogeneity range (x≤1/6) and the absence of charge ordering. But the most important feature of the Ag-manganites deals with the exceptionally high magnetoresistance (−25%) at room temperature under 1.2 T, that appears for the composition x=1/6. The latter is interpreted as the coincidence of the optimal double exchange condition (Mn3+:Mn4+=2) with Tmax=300 K (maximum of the ρ(T) curve in zero field).  相似文献   

12.
The mixed spinel-perovskite composites of xMnFe2O4-(1-x)BiFeO3 with x=0, 0.1, 0.2, 0.3 and 0.4 were prepared by solid state reaction method. The structure and grain size were examined by means of X-ray diffraction (XRD) and field emission scanning electron microscopy (FESEM), respectively. The XRD results showed that the composites consisted of spinel MnFe2O4 and perovskite BiFeO3 phases after being calcined at the temperature 950 °C for 2 h. The grain size ranged from 0.8 to 1 μm. Magnetization was found to increase with increasing concentration of ferrite content. The variation of dielectric constant and dielectric loss with frequency showed dispersion in the low frequency range. Magnetocapacitance was also observed in the prepared composites, which may be the sign of magnetoelectric coupling in the synthesized composites at room temperature.  相似文献   

13.
The question of whether the temperature dependences of the magnetic susceptibility and the electrical resistivity of UCu5−xNix near, and away from, the QCP where TN is suppressed to T = 0 are due to intrinsic fluctuations or are dominated by disorder effects is addressed. The interesting ρ ∝ log T behavior below 2 K present for 0.75 ? x ? 1.1 is analyzed and discussed.  相似文献   

14.
Polycrystalline perovskite manganites La0.7−xEuxBa0.3MnO3(x=0.05, 0.1 and 0.15) were prepared by sol-gel method. The prepared samples remain single phase with a perovskite structure, revealed by X-ray diffraction. The structure refinement of La0.7−xEuxBa0.3MnO3(x=0.05, 0.1 and 0.15) samples was performed in the hexagonal setting of the Rc space group. The dependence of magnetization M on applied magnetic field H and temperature T was measured carefully near the Curie temperature TC for all the samples. With the increasing Eu content, both the unit cell volume and Curie temperature TC of 298 K has been detected with a maximum of magnetic entropy |ΔSMmax| for the La0.7−xEuxBa0.3MnO3 with x=0.15, reaching a value of 2.3 J/kg K when a magnetic field of 10 kOe was applied and the relative cooling power (RCP) is 46 J/kg. These results suggest that the material may be a suitable candidate as working substance in magnetic refrigeration near room temperature.  相似文献   

15.
BiFe1−xNixO3 ceramic powders with x up to 0.10 have been prepared by the sol-gel technique. The band gap of BiFeO3 is 2.23 eV, and decreases to 2.09 eV for BiFe0.95Ni0.05O3 and BiFe0.90Ni0.10O3. The Mössbauer spectra show sextet at room temperature, indicating the magnetic ordering and the presence of only Fe3+ ions. Superparamagnetism with blocking temperature of 31 K for BiFe0.95Ni0.05O3 and 100 K for BiFe0.90Ni0.10O3 was observed. Enhanced magnetization at room temperature have been observed (1.0 emu/g for BiFe0.95Ni0.05O3 and 2.9 emu/g for BiFe0.90Ni0.10O3 under magnetic field of 10,000 Oe), which is one order larger than that of BiFeO3 (0.1 emu/g under magnetic field of 10,000 Oe). The enhanced magnetization was attributed to the suppression of the cycloidal spin structure by Ni3+ substitution and the ferrimagnetic interaction between Fe3+ and Ni3+ ions.  相似文献   

16.
Polycrystalline binary rare earth intermetallic compound DySi is found to be dimorphic at room temperature (orthorhombic FeB type, space group Pnma, No. 62 and CrB type, space group Cmcm, No. 63). This compound exhibits interesting magnetic properties including an antiferromagnetic transition at ∼38 K (TN) and a low-temperature field-induced transition in a critical field of 65 kOe, at 5 K. The values of magnetic entropy change and adiabatic temperature change near the magnetic transition in DySi have been estimated using the heat capacity data obtained in different applied fields. Negative magnetocaloric effect is observed at temperatures close to and below TN, in fields up to 50 kOe.  相似文献   

17.
The phase relation of LaFe11.5Si1.5 alloys annealed at different high-temperature from 1223 K (5 h) to 1673 K (0.5 h) has been studied. The powder X-ray diffraction (XRD) patterns show that large amount of 1:13 phase begins to form in the matrix alloy consisting of α-Fe and LaFeSi phases when the annealing temperature is 1423 K. In the temperature range from 1423  to 1523 K, α-Fe and LaFeSi phases rapidly decrease to form 1:13 phase, and LaFeSi phase is rarely observed in the XRD pattern of LaFe11.5Si1.5 alloy annealed at 1523 K. With annealing temperature increasing from 1573  to 1673 K, the LaFeSi phase is detected again in the LaFe11.5Si1.5 alloy, and there is La5Si3 phase when the annealing temperature reaches 1673 K. There almost is no change in the XRD patterns of LaFe11.5Si1.5 alloys annealed at 1523 K for 3-5 h. According to this result, the La0.8Ce0.2Fe11.5−xCoxSi1.5 (0≤×≤0.7) alloys are annealed at 1523 K (3 h). The analysis of XRD patterns shows that La0.8Ce0.2Fe11.5xCoxSi1.5 alloys consist of the NaZn13-type main phase and α-Fe impurity phase. With the increase of Co content from x=0 to 0.7, the Curie temperature TC increases from 180 to 266 K. Because the increase of Co content can weaken the itinerant electron metamagnetic transition, the order of the magnetic transition at TC changes from first to second-order between x=0.3 and 0.5. Although the magnetic entropy change decreases from 34.9 to 6.8 J/kg K with increasing Co concentration at a low magnetic field of 0-2 T, the thermal and magnetic hysteresis loss reduces remarkably, which is very important for the magnetic refrigerant near room temperature.  相似文献   

18.
Single-phase Zn1−xCoxO (0.02≤x≤0.08) dilute magnetic semiconductor is prepared by mechanical milling process. The shift of XRD peaks towards the higher angle and a redshift in the band gap compared to the undoped ZnO ensure the incorporation of Co2+ ions in the semiconductor host lattice. Pure ZnxCo1−xO phases show the paramagnetic behavior in the temperature range 80 K≤T≤300 K. The room temperature volume magnetic susceptibility (χv) estimated in case of Zn0.96Co0.04O is ∼10−5 emu/Oe cm3. The temperature dependence of susceptibility χv can be fitted well with Curie law confirming the paramagnetic interaction. The observed crystal-field splitting of 3d levels of Co2+ ions inside Zn1−xCoxO has been successfully interpreted using Curie law.  相似文献   

19.
The magnetic and electrical properties of the Al-doped polycrystalline spinels ZnxCryAlzSe4 (0.13≤z≤0.55) with the antiferromagnetic (AFM) order and semiconducting behavior were investigated. A complex antiferromagnetic structure below a Néel temperature TN≈23 K for the samples with z up to 0.4 contrasting with the strong ferromagnetic (FM) interactions evidenced by a large positive Curie-Weiss temperature θCW decreasing from 62.2 K for z=0.13 to 37.5 K for z=0.55 was observed. Detailed investigations revealed a divergence between the zero-field-cooling (ZFC) and field-cooling (FC) susceptibilities at temperature less than TN suggesting bond frustration due to competing ferromagnetic and antiferromagnetic exchange interactions in the compositional range 0.13≤z≤0.4. Meanwhile, for z=0.55 a spin-glass-like behavior of cluster type with randomly oriented magnetic moments is observed as the ZFC-FC splitting goes up to the freezing temperature Tf=11.5 K and the critical fields connected both with a transformation of the antiferromagnetic spin spiral via conical magnetic structure into ferromagnetic phase disappear.  相似文献   

20.
The magnetic and magnetocaloric properties of polycrystalline La0.70(Ca0.30−xSrx)MnO3:Ag 10% manganite have been investigated. All compositions are crystallized in single phase orthorhombic Pbnm space group. Both, the insulator–metal transition temperature (TIM) and Curie temperature (Tc) are observed at 298 K for x=0.10 composition. Though both TIM and Tc are nearly unchanged with Ag addition, the MR is increased. The MR at 300 K is found to be as large as 31% with magnetic field change of 1 T, whereas it reaches up to 49% at magnetic field of 3 T for the La0.70Ca0.20Sr0.10MnO3:Ag0.10 sample. The maximum entropy change (ΔSMmax) at near its Tc (300.5 K) is 7.6 J kg−1 K−1 upon the magnetic field change of 5 T. The La0.70Ca0.20Sr0.10MnO3:Ag0.10 sample having good MR (31%1 T, 49%3 T) and reasonable change in magnetic entropy (7.6 J kg−1.K−1, 5 T) at 300 K can be a potential magnetic refrigerant material at ambient temperatures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号