首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Fluorescence of the cyanine dye Thiazole Orange (TO) is quenched by intramolecular twisting in the excited state. In polypeptide nucleic acids, a vibrational progression in a 1400 cm(-1) mode depends on base pairing, from which follows that the high-frequency displacement is coupled to the twist coordinate. The coupling is intrinsic to TO. This is shown by femtosecond fluorescence upconversion and transient absorption spectroscopy with the dye in methanol solution. Narrow emission from the Franck-Condon state shifts to the red and broadens within 100 fs. The radiative rate does not decrease during this process. Vibrational structure builds up on a 200 fs time scale; it is assigned to asymmetric stretching activity in the methine bridge. Further Stokes shift and decay are observed over 2 ps. Emission from the global S(1) minimum is discovered in an extremely wide band around 12 000 cm(-1). As the structure twists away from the Franck-Condon region, the mode becomes more displaced and overlap with increasingly higher vibrational wave functions of the electronic ground state is achieved. Twisting motion is thus leveraged into a fast-shrinking effective energy gap between the two electronic states, and internal conversion ensues.  相似文献   

3.
In this contribution, we report on fast and ultrafast dynamics of a non-steroidal anti-inflammatory drug, piroxicam (PX), in methyl acetate (MAC) and triacetin (TAC), two solvents of different viscosities. The enol form of PX undergoes a femtosecond (shorter than 100 fs) electronically excited state intramolecular proton-transfer reaction to produce keto tautomers. These structures exhibit an internal twisting motion to generate keto rotamers in 2–5 ps, a time being longer in TAC. The transient absorption/emission spectrum is very broad indicating that the potential-energy surface at the electronically excited state is very flat, and reflecting the involvement of several coordinates along which the wavepacket of the fs-produced structures evolve.  相似文献   

4.
利用飞秒泵浦-探测技术结合飞行时间质谱(TOF-MS),研究了丙烯酸分子被200nm泵浦光激发到第二电子激发态(S2)后的超快预解离动力学.采集了母体离子和碎片离子的时间分辨质谱信号,并利用动力学方程对时间分辨离子质谱信号进行拟合和分析,揭示了预解离通道的存在.布居在S2激发态的分子通过快速的内转换弛豫到第一电子激发态(S1),时间常数为210fs,随后再经内转换从S1态弛豫到基态(S0)的高振动态,时间常数为1.49ps.分子最终在基态高振动态势能面上发生C-C键和C-O键的断裂,分别解离生成H2C=CH和HOCO、H2C=CHCO和OH中性碎片,对应的预解离时间常数分别约为4和3ps.碎片离子的产生有两个途径,分别来自于母体离子的解离和基态高振动态势能面上中性碎片的电离.  相似文献   

5.
利用啁啾脉冲放大技术建立了一套掺钛蓝宝石飞秒激光放大系统,该系统输出中心波长808nm,单脉冲能量8mJ,脉冲宽度60fs,脉冲重复频率20Hz.利用飞秒激光泵浦-探测及分子束技术,结合飞行时间质谱,对1,3-二氯苯分子的激发态动力学过程进行了研究,实验中观察到该分子能级间的量子拍频现象,并获得了第一单重激发态寿命及其拍频频率,阐述了飞秒激光场下间位二氯苯分子的电离解离机理.  相似文献   

6.
By using a sub-5-fs visible laser pulse, we have made the first observation of the vibrational spectra of the transition state during trans-cis isomerization in the retinal chromophore of bacteriorhodopsin (bR(S68). No instant isomerization of the retinal occurs in spite of electron promotion from the bonding pi-orbital to the anti-bonding pi*-orbital. The difference between the in-plane and out-of-plane vibrational frequencies (about 1150-1250 and 900-1000 cm(-1), respectively) is reduced during the first time period. The vibrational spectra after this period became very broad and weak and are ascribed to a "silent state." The silent state lasts for 700-900 fs until the chromophore isomerizes to the cis-C13 = C14 conformation. The frequency of the C = C stretching mode was modulated by the torsion mode of the C13 = C14 double bond with a period of 200 fs. The modulation was clearly observed for four to five periods. Using the empirical equation for the relation between bond length and stretching frequency, we determined the transitional C = C bond length with about 0.01 angstroms accuracy during the torsion motion around the double bond with 1-fs time resolution.  相似文献   

7.
Rapid motion capture of phase-controlled wave packets was realized using a sensitive wave-packet spectrometer, which was previously developed by the present authors. Two-dimensional Fourier-transformed spectrograms obtained by the wave-packet spectrometer provide us full information about the wave-packet motion on both excited- and ground-state potential surfaces. Vibrational wave packet associated with a twisting mode in a DTTCI molecule was observed to be dependent on the pulse chirp, and was generated in the excited state preferably with negatively chirped excitation. The result indicates that the excited-state wave packet can be driven along a favorable configuration coordinate by using phase-controlled femtosecond pulses. The present method is essential to adaptive coherent-control application.  相似文献   

8.
C2F4 was excited by using a 150 fs pulse in its longest-wavelength band to the Rydberg (3 s) state and then probed by photoionization techniques at 810 nm. The molecule relaxes in two consecutive steps (time constants 29 and 118 fs), probably via the pipi* state, which is lowered in energy by stretching and twisting the C=C bond. A coherent oscillation (350 fs) was found, which we assign to an overtone of the twist vibration (47.6 cm(-1)) in this state. we also conclude that dissociation to singlet and some triplet CF2 only takes place in the hot ground state of C2F4, from where also the C2F4 triplet state is populated. The potentials and their conical intersections are discussed with respect to relaxation and dissociation, including also some new considerations of thermal processes.  相似文献   

9.
We regard the rovibrational wave packet dynamics of NaI in a static electric field after femtosecond excitation to its first electronically excited state. The following quasibound nuclear wave packet motion is accompanied by a bonding situation changing from covalent to ionic. At times when the charge separation is present, i.e., when the bond-length is large, a strong dipole moment exists and rotational excitation takes place. Upon bond contraction, the then covalently bound molecule does not experience the external field. This scenario repeats itself periodically. Thus, the vibrational dynamics causes a situation which is comparable to the interaction of the molecule with a train of pulses where the pulse separation is determined by the vibrational period.  相似文献   

10.
In both water and in ice, the absorption spectra of bromine are dramatically broadened and blueshifted, and all fluorescence is quenched. Time resolved, electronically resonant transient grating measurements are carried out to characterize the vibronic dynamics of the trapped molecule in its electronic B(3Pi0u) state in ice. Independent of the initial excitation energy, after the first half-period of motion, a vibrational packet is observed to oscillate near the bottom of the potential, near nu=1. The oscillations undergo a chirped decay to a terminal frequency of 169 cm(-1) on a time scale of taunu=1240 fs, to form the stationary nu=0 level. The electronic population in the B state decays in taue=1500 fs. Adiabatic following to the cage-compression coordinate is a plausible origin of the chirp. Analysis of the absorption spectrum is provided to recognize that solvent coordinates are directly excited in the process. The observed blueshift of the absorption is modeled by considering the Br2-OH2 complex. Two-dimensional simulations, that explicitly include the solvent coordinate, reproduce both the time data and the absorption spectrum. The observed sharp vibrational recursions can be explained by overdamped motion along the solvent coordinate, and wave packet focusing by fast dissipation during the first half-period of motion of the molecular coordinate.  相似文献   

11.
To study the early time hydrogen-bonding dynamics of chromophore in hydrogen-donating solvents upon photoexcitation, the infrared spectra of the hydrogen-bonded solute-solvent complexes in electronically excited states have been calculated using the time-dependent density functional theory (TDDFT) method. The hydrogen-bonding dynamics in electronically excited states can be widely monitored by the spectral shifts of some characteristic vibrational modes involved in the formation of hydrogen bonds. In this study, we have demonstrated that the intermolecular hydrogen bonds between coumarin 102 (C102) and hydrogen-donating solvents are strengthened in the early time of photoexcitation to the electronically excited state by theoretically monitoring the stretching modes of C=O and H-O groups. This is significantly contrasted with the ultrafast hydrogen bond cleavage taking place within a 200-fs time scale upon electronic excitation, proposed in many femtosecond time-resolved vibrational spectroscopy experiments. The transient hydrogen bond strengthening behaviors in excited states of chromophores in hydrogen-donating solvents, which we have demonstrated here for the first time, may take place widely in many other systems in solution and are very important to explain the fluorescence-quenching phenomena associated with some radiationless deactivation processes, for example, the ultrafast solute-solvent intermolecular electron transfer and the internal conversion process from the fluorescent state to the ground state.  相似文献   

12.
Nonradiative decay of the photoexcited RNA base uracil has been studied in fully explicit aqueous solution using nonadiabatic ab initio molecular dynamics. Detailed comparison of the time-dependent nonadiabatic transition probability with specific molecular vibrational motions provides insight into the mechanism of the ultrafast internal conversion. From a monoexponential fit to the excited state ensemble population, the lifetime of the first electronically excited ππ* singlet state has been determined to be 359 fs. Additional, reference, nonadiabatic simulations have been carried out in the gas phase, pinpointing the effects of the solvent on the photophysics of uracil. The gas phase excited state lifetime is calculated to be 608 fs, somewhat longer than in solution. In terms of excitation energies and geometrical parameters, the differences between gas phase and aqueous solution are found to be generally small. A notable exception is the excited state out-of-plane torsional motion about the CC double bond, which appears severely damped by the solvent. Moreover, hydrogen bond interactions between the uracil oxygens and the solvent hydrogens are seen to enhance internal conversion.  相似文献   

13.
Ultrafast relaxation of electronically excited pure He droplets is investigated by femtosecond time-resolved photoelectron imaging. Droplets are excited by extreme ultraviolet (EUV) pulses with photon energies below 24 eV. Excited states and relaxation products are probed by ionization with an infrared (IR) pulse with 1.6 eV photon energy. An initially excited droplet state decays on a time scale of 220 fs, leading predominantly to the emission of unaligned 1s3d Rydberg atoms. In a second relaxation channel, electronically aligned 1s4p Rydberg atoms are emitted from the droplet within less than 120 fs. The experimental results are described within a model that approximates electronically excited droplet states by localized, atomic Rydberg states perturbed by the local droplet environment in which the atom is embedded. The model suggests that, below 24 eV, EUV excitation preferentially leads to states that are localized in the surface region of the droplet. Electronically aligned 1s4p Rydberg atoms are expected to originate from excitations in the outermost surface regions, while nonaligned 1s3d Rydberg atoms emerge from a deeper surface region with higher local densities. The model is used to simulate the He droplet EUV absorption spectrum in good agreement with previously reported fluorescence excitation measurements.  相似文献   

14.
Excited state relaxation of indan-1,3-dione derivatives with different substituents attached to the phenyl ring and with the bridged amino group was investigated by means of the steady-state fluorescence and femtosecond time-resolved absorption pump–probe spectroscopy. Bridging of the amino group increases the fluorescence quantum yield and the excited state lifetime. Analysis of the results indicates that the phenyl ring twisting around a single central bond leads to the nonradiative state formation and to subsequent fast relaxation to the ground state. Double bond twisting takes place in molecules with the bridged amino group and causes a large Stokes shift and slightly slower excited state relaxation.  相似文献   

15.
We present an investigation of structural dynamics in excited-state cations probed in real-time by femtosecond time-resolved ion photofragmentation spectroscopy. From photoelectron spectroscopy data on 1,3-dibromopropane we conclude that the pump pulse ionizes the molecule, populating an excited electronic state of the radical cation. In this state a coherent torsional vibration of the bromomethylene groups with a period of 700 fs is started and probed by photoinduced fragmentation of the molecular cation. The vibrational coherence dephases with the decay of the excited state to the ground state of the cation in 1.6 ps. The real-time probing of the excited-state dynamics is made possible by exploiting the interaction between the two bromine chromophores and its dependence on molecular conformation. This experiment therefore illustrates the applicability of the concept of probing ultrafast molecular dynamics using the intramolecular interaction between two chromophores.  相似文献   

16.
The excited state dynamics of protonated adenine in the gas phase were investigated by femtosecond pump-probe transient mass spectroscopy. Adenine was protonated in an electrospray ionization source and transferred to a Paul trap. Two femtosecond laser pulses at 266 nm and 800 nm excited the lowest electronic pipi* state and probed the excited-state dynamics by monitoring ion fragment formation. The measured excited state decay is monoexponential with a lifetime shorter than 161 fs. This agrees with a theoretical prediction of very fast internal conversion via a conical intersection with the ground state.  相似文献   

17.
Employing femtosecond pulse-shaping techniques we investigate ultrafast, coherent and incoherent dynamics in single molecules at room temperature. In first experiments single molecules are excited into their purely electronic 0-0 transition by phase-locked double-pulse sequences with pulse durations of 75 fs and 20 nm spectral band width. Their femtosecond kinetics can then be understood in terms of a 2-level system and modelled with the optical Bloch equations. We find that we observe the coherence decay in single molecules, and the purely electronic dephasing times can be retrieved directly in the time domain. In addition, the Rabi-frequencies and thus the transition dipole moments of single molecules are determined from these data. Upon excitation of single molecules into a vibrational level of the electronically excited state also incoherent intra-molecular vibrational relaxation is recorded. Increasing the spectral band width of the excitation pulses to up to 120 nm (resulting in a transform-limited pulse width of 15 fs) coherent superpositions of excited state vibrational modes, i.e. vibrational wave packets, are excited. The wave-packet oscillations in the excited state potential energy surface are followed in time by a phase-controlled pump-probe scheme, which permits to record wave packet interference, and to determine the energies of vibrational modes and their coupling strengths to the electronic transition.  相似文献   

18.
The three-body Coulomb explosion of O3, O3(3+)-->O++O++O+, in ultrashort intense laser fields (2x10(15) W/cm2) is studied with two different pulse durations (9 and 40 fs) by the coincidence momentum imaging method. In addition to a decrease in the total kinetic energy release, a broadening in the Dalitz plot distribution [Philos. Mag. 44, 1068 (1953)] is observed when the pulse duration is increased from 9 to 40 fs. The analysis based on a simple Coulomb explosion model shows that the geometrical structure of O3 remains almost unchanged during the interaction with the few-cycle intense laser fields, while a significant structural deformation along all the three vibrational coordinates, including the antisymmetric stretching coordinate, is identified in the 40 fs intense laser fields. The observed nuclear dynamics are discussed in terms of the population transfer to the excited states of O3.  相似文献   

19.
In a combined study on the photophysics of 2-(2'-hydroxyphenyl)-benzothiazole (HBT) in polar acetonitrile utilizing ultrafast infrared spectroscopy and quantum chemical calculations, we show that a branching of reaction pathways occurs on femtosecond time scales. Apart from the excited-state intramolecular hydrogen transfer (ESIHT) converting electronically excited enol tautomer into the keto tautomer, known to be the dominating mechanism of HBT in nonpolar solvents such as cyclohexane and tetrachloroethene, in acetonitrile solution twisting also occurs around the central C-C bond connecting the hydroxyphenyl and benzothiazole units in both electronically excited enol and keto tautomers. The solvent-induced intramolecular twisting enables efficient internal conversion pathways to both enol and keto tautomers in the electronic ground state. Whereas relaxation to the most stable enol tautomer with twisting angle Θ = 0° implies full ground state recovery, a small fraction of HBT molecules persists as the keto twisting conformer with the twisting angle Θ = 180° for delay times extending beyond 120 ps.  相似文献   

20.
We demonstrate quantum mechanically how to resolve enantiomers from an oriented racemic mixture taking advantage of photodissociation. Our approach employs a femtosecond ultraviolet (UV) laser pulse with specific linear polarization achieving selective photodissociation of one enantiomer from a mixture of L and R enantiomers. As a result, the selected enantiomer is destroyed in the electronically excited state while the opposite enantiomer is left intact in the ground state. As an example we use H2POSD which presents axial chirality. A UV pulse excites the lowest singlet excited state which has nsigma* character and is, therefore, strongly repulsive along the P-S bond. The model simulations are performed using wavepackets which propagate on two dimensional potential energy surfaces, calculated along the chirality and dissociation reaction coordinates using the CASSCF level of theory.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号