首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this article, we study a long memory stochastic volatility model (LSV), under which stock prices follow a jump-diffusion stochastic process and its stochastic volatility is driven by a continuous-time fractional process that attains a long memory. LSV model should take into account most of the observed market aspects and unlike many other approaches, the volatility clustering phenomenon is captured explicitly by the long memory parameter. Moreover, this property has been reported in realized volatility time-series across different asset classes and time periods. In the first part of the article, we derive an alternative formula for pricing European securities. The formula enables us to effectively price European options and to calibrate the model to a given option market. In the second part of the article, we provide an empirical review of the model calibration. For this purpose, a set of traded FTSE 100 index call options is used and the long memory volatility model is compared to a popular pricing approach – the Heston model. To test stability of calibrated parameters and to verify calibration results from previous data set, we utilize multiple data sets from NYSE option market on Apple Inc. stock.  相似文献   

2.
给出动态随机弹性的概念及运算性质,讨论了动态随机弹性在期权定价模型中的应用.主要结果有:(1)在波动率为常数时,期权价格对的弹性,得到了动态随机弹性服从运动,并给出了相应的经济解释;(2)由于波动率一般不是常数,也是随机过程,因此本文进一步研究了期权价格对波动率的弹性,就股票价格的波动情况给出了数学描述和金融意义上的解释.  相似文献   

3.
The Black-Scholes model does not account non-Markovian property and volatility smile or skew although asset price might depend on the past movement of the asset price and real market data can find a non-flat structure of the implied volatility surface. So, in this paper, we formulate an underlying asset model by adding a delayed structure to the constant elasticity of variance (CEV) model that is one of renowned alternative models resolving the geometric issue. However, it is still one factor volatility model which usually does not capture full dynamics of the volatility showing discrepancy between its predicted price and market price for certain range of options. Based on this observation we combine a stochastic volatility factor with the delayed CEV structure and develop a delayed hybrid model of stochastic and local volatilities. Using both a martingale approach and a singular perturbation method, we demonstrate the delayed CEV correction effects on the European vanilla option price under this hybrid volatility model as a direct extension of our previous work [12].  相似文献   

4.
In this paper, we study the optimal investment strategy of defined-contribution pension with the stochastic salary. The investor is allowed to invest in a risk-free asset and a risky asset whose price process follows a constant elasticity of variance model. The stochastic salary follows a stochastic differential equation, whose instantaneous volatility changes with the risky asset price all the time. The HJB equation associated with the optimal investment problem is established, and the explicit solution of the corresponding optimization problem for the CARA utility function is obtained by applying power transform and variable change technique. Finally, we present a numerical analysis.  相似文献   

5.
American Options Exercise Boundary When the Volatility Changes Randomly   总被引:2,自引:0,他引:2  
The American put option exercise boundary has been studied extensively as a function of time and the underlying asset price. In this paper we analyze its dependence on the volatility, since the Black and Scholes model is used in practice via the (varying) implied volatility parameter. We consider a stochastic volatility model for the underlying asset price. We provide an extension of the regularity results of the American put option price function and we prove that the optimal exercise boundary is a decreasing function of the current volatility process realization. Accepted 13 January 1998  相似文献   

6.
研究Stein-Stein随机波动率模型下带动态VaR约束的最优投资组合选择问题. 假设投资者的目标是最大化终端财富的期望幂效用,可投资于无风险资产和一种风险资产, 风险资产的价格过程由Stein-Stein随机波动率模型刻画. 同时, 投资者期望能在投资过程中利用动态VaR约束控制所面对的风险.运用Bellman动态规划方法和Lagrange乘子法, 得到了该约束问题最优策略的解析式及特殊情形下最优值函数的解析式; 并通过理论分析和数值算例, 阐述了动态VaR约束与随机波动率对最优投资策略的影响.  相似文献   

7.
The geometric Brownian motion is routinely used as a dynamic model of underlying project value in real option analysis, perhaps for reasons of analytic tractability. By characterizing a stochastic state variable of future cash flows, this paper considers how transformations between a state variable and cash flows are related to project volatility and drift, and specifies necessary and sufficient conditions for project volatility and drift to be time-varying, a topic that is important for real option analysis because project value and its fluctuation can only seldom be estimated from data. This study also shows how fixed costs can cause project volatility to be mean-reverting. We conclude that the conditions of geometric Brownian motion can only rarely be met, and therefore real option analysis should be based on models of cash flow factors rather than a direct model of project value.  相似文献   

8.
保险公司实业项目投资策略研究   总被引:1,自引:0,他引:1  
考虑保险公司实业项目投资问题. 假定1)保险公司可以选择在某一时刻投资一实业项目(Real investment), 该项投资可以为保险公司带来稳定的资金收入而不影响其风险;2)保险公司可以将盈余资金投资于证券市场, 该市场包含一风险资产.目标是通过最小化破产概率来确定保险公司实业项目投资时间和风险资产的投资金额.运用混合随机控制-最优停时方法,得到值函数的半显式解, 进而得到保险公司的最佳投资策略: 以固定金额投资证券市场; 当保险公司盈余高于一定额度(称为投资门槛)时进行项目投资, 并降低风险资产投资金额.最后采用数值算例分析了不同市场环境下投资门槛与投资金额, 投资收益率之间的关系. 结果表明:1)项目投资所需金额越少、收益率越高, 则项目投资的门槛越低;2)市场环境较好时(牛市)项目的投资门槛提高, 保险公司应较多的投资于证券市场; 反之, 当市场环境较差时(熊市)投资门槛降低,保险公司倾向于实业项目投资.  相似文献   

9.
This paper develops a distribution class, termed Normal Tempered Stable, by subordinating a drifted Brownian motion through a strictly increasing Tempered Stable process that generalizes the Variance Gamma and the Normal Inverse Gaussian and is used to model the logarithm asset returns. The newly added parameter is to create subclasses for all the distributions discovered in financial market. The empirical test suggests that time series of Technology stock returns in US market reject both the Variance Gamma distribution and the Normal Inverse Gaussian distribution and admit instead another subclass of the Normal Tempered Stable distribution. Furthermore, we introduce stochastic volatilities into the Normal Tempered Stable process and derive explicit formulae for option pricing and hedging by means of the characteristic function based methods. To answer the question of how well different models work in practice, we investigate four models adopting data on daily equity option prices and obtain several findings from the numerical results. To sum up, the Normal Tempered Stable process with stochastic volatility is able to adequately capture implied volatility dynamics and seen as a superior model relative to the jump-diffusion stochastic volatility model, based on the construction methodology that incorporates more sophisticated and flexible jump structure and the systematic and realistic treatment of volatility dynamics. The Normal Tempered Stable model turns out to have the competitive performance in an efficient manner given that it only requires three parameters.  相似文献   

10.
This paper develops a subordinated stochastic process model for an asset price, where the directing process is identified as information. Motivated by recent empirical and theoretical work, the paper makes use of the under-used market statistic of transaction count as a suitable proxy for the information flow. An option pricing formula is derived, and comparisons with stochastic volatility models are drawn. Both the asset price and the number of trades are used in parameter estimation. The underlying process is found to be fast mean reverting, and this is exploited to perform an asymptotic expansion. The implied volatility skew is then used to calibrate the model.  相似文献   

11.
In this paper, we consider a stochastic volatility model for pricing multi‐asset European options that are widely used in the real world, under the assumption that the volatilities are driven by different OU processes. Using the singular perturbation method for multi‐parameter and the boundary layer theory, we derive a uniform asymptotic expansion for the option prices, as well as the uniform error estimates. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

12.
站在保险公司管理者的角度, 考虑存在不动产项目投资机会时保险公司的再保险--投资策略问题. 假定保险公司可以投资于不动产项目、风险证券和无风险证券, 并通过比例再保险控制风险, 目标是最小化保险公司破产概率并求得相应最佳策略, 包括: 不动产项目投资时机、 再保险比例以及投资于风险证券的金额. 运用混合随机控制-最优停时方法, 得到最优值函数及最佳策略的显式解. 结果表明, 当且仅当其盈余资金多于某一水平(称为投资阈值)时保险公司投资于不动产项目. 进一步的数值算例分析表明: (a)~不动产项目投资的阈值主要受项目收益率影响而与投资金额无明显关系, 收益率越高则投资阈值越低; (b)~市场环境较好(牛市)时项目的投资阈值降低; 反之, 当市场环境较差(熊市)时投资阈值提高.  相似文献   

13.
广义Black-Scholes模型期权定价新方法--保险精算方法   总被引:22,自引:0,他引:22  
利用公平保费原则和价格过程的实际概率测度推广了Mogens Bladt和Tina Hviid Rydberg的结果.在无中间红利和有中间红利两种情况下,把Black-Scholes模型推广到无风险资产(债券或银行存款)具有时间相依的利率和风险资产(股票)也具有时间相依的连续复利预期收益率和波动率的情况,在此情况下获得了欧式期权的精确定价公式以及买权与卖权之间的平价关系.给出了风险资产(股票)具有随机连续复利预期收益率和随机波动率的广义Black-Scholes模型的期权定价的一般方法.利用保险精算方法给出了股票价格遵循广义Ornstein-Uhlenback过程模型的欧式期权的精确定价公式和买权和卖权之间的平价关系.  相似文献   

14.
In this paper, we consider the jump‐diffusion risk model with proportional reinsurance and stock price process following the constant elasticity of variance model. Compared with the geometric Brownian motion model, the advantage of the constant elasticity of variance model is that the volatility has correlation with the risky asset price, and thus, it can explain the empirical bias exhibited by the Black and Scholes model, such as volatility smile. Here, we study the optimal investment–reinsurance problem of maximizing the expected exponential utility of terminal wealth. By using techniques of stochastic control theory, we are able to derive the explicit expressions for the optimal strategy and value function. Numerical examples are presented to show the impact of model parameters on the optimal strategies. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

15.
杨鹏  林祥 《经济数学》2012,(1):42-46
对跳-扩散风险模型,研究了最优投资和再保险问题.保险公司可以购买再保险减少理赔,保险公司还可以把盈余投资在一个无风险资产和一个风险资产上.假设再保险的方式为联合比例-超额损失再保险.还假设无风险资产和风险资产的利率是随机的,风险资产的方差也是随机的.通过解决相应的Hamilton-Jacobi-Bellman(HJB)方程,获得了最优值函数和最优投资、再保险策略的显示解.特别的,通过一个例子具体的解释了得到的结论.  相似文献   

16.
应用随机最优控制方法研究Heston随机波动率模型下带有负债过程的动态投资组合问题,其中假设股票价格服从Heston随机波动率模型,负债过程由带漂移的布朗运动所驱动.金融市场由一种无风险资产和一种风险资产组成.应用随机动态规划原理和变量替换法得出了上述问题在幂效用和指数效用函数下最优投资策略的显示解,并给出数值算例分别分析了市场参数在幂效用和指数效用函数下对最优投资策略的影响.  相似文献   

17.
基于快速均值回归随机波动率模型, 研究双限期权的定价问题, 同时推导了考虑均值回归随机波动率的双限期权的定价公式。 根据金融市场中SPDR S&P 500 ETF期权的隐含波动率数据和标的资产的历史收益数据, 对快速均值回归随机波动率模型中的两个重要参数进行估计。 利用估计得到的参数以及定价公式, 对双限期权价格做了数值模拟。 数值模拟结果发现, 考虑了随机波动率之后双限期权的价格在标的资产价格偏高的时候会小于基于常数波动率模型的期权价格。  相似文献   

18.
Many underlying assets of option contracts, such as currencies, commodities, energy, temperature and even some stocks, exhibit both mean reversion and stochastic volatility. This paper investigates the valuation of options when the underlying asset follows a mean-reverting lognormal process with stochastic volatility. A closed-form solution is derived for European options by means of Fourier transform. The proposed model allows the option pricing formula to capture both the term structure of futures prices and the market implied volatility smile within a unified framework. A bivariate trinomial lattice approach is introduced to value path-dependent options with the proposed model. Numerical examples using European options, American options and barrier options demonstrate the use of the model and the quality of the numerical scheme.  相似文献   

19.
This is a complementary study of a recent work by Yoon et al. (2013) [1] [J.-H. Yoon, J.-H. Kim, S.-Y. Choi, Multiscale analysis of a perpetual American option with the stochastic elasticity of variance, Appl. Math. Lett. 26 (7) (2013)] which excludes a certain level of the elasticity of variance. A second-order correction to the Black–Scholes option price and optimal exercise boundary for a perpetual American put option is made under the stochastic elasticity of variance of a risky asset. Contrary to the case of Yoon et al. (2013) [1], it is given by an explicit closed-form analytic expression so that one can access clearly the sensitivity of the option price and the optimal exercise boundary to changes in model parameters as well as the impact of the presence of a stochastic elasticity term on the option price and the optimal time to exercise.  相似文献   

20.
We consider a portfolio optimization problem under stochastic volatility as well as stochastic interest rate on an infinite time horizon. It is assumed that risky asset prices follow geometric Brownian motion and both volatility and interest rate vary according to ergodic Markov diffusion processes and are correlated with risky asset price. We use an asymptotic method to obtain an optimal consumption and investment policy and find some characteristics of the policy depending upon the correlation between the underlying risky asset price and the stochastic interest rate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号