首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 171 毫秒
1.
摘要:应用聚合电介质吸附的定标理论,根据介质和表面电介质常数的比率,考虑多化合价吸附电介质之间强相关性作用,我们提出一种表面排斥电荷的近似定标理论方法,根据这种方法把电介质表面吸附层的相图分为本质上不同的两大类。从相图可知:当表面电荷密度低(或体带相反电荷离子密度高),这时表面和体带相反电荷离子密度几乎相同;一旦表面电荷密度足够高,就使带相反电荷的离子在表面上浓缩。据此,可确定在这个区域内,低化合价聚合电介质形成一个相关的多链状态,当化合价足够高时,由于近邻链之间的更强排斥增强,使状态转变成单链。  相似文献   

2.
本文采用Langevin动力学模拟的方法,研究存在三价盐离子时,接枝在带相反电荷的极板上的部分带电的四个臂星型链呈现出的塌缩现象. 结果表明,在电场作用下,接枝星型链的平均带电分数和盐浓度在带电单体和三价盐离子的竞争性吸附中起关键作用. 对于接枝在带相反电荷的极板上的带电分数较高的星型链,刷子会塌缩到接枝极板上,并会产生极板表面电荷的过度补偿现象. 当带电分数较低时,如果星型链所带电荷数与三价盐离子电荷数相同,即使在很低的盐浓度下,极板对三价盐离子的吸引能力也高于对星型链中的带电单体的吸引. 结果表明,星型链在带电分数较低的情况下,三价盐离子的加入不会导致接枝电极表面电荷的过度补偿. 此外,本文还研究了三价盐离子对电场作用下星型刷的拉伸的影响.  相似文献   

3.
本文采用Langevin动力学模拟的方法,研究存在三价盐离子时,接枝在带相反电荷的极板上的部分带电的四个臂星型链呈现出的塌缩现象.结果表明,在电场作用下,接枝星型链的平均带电分数和盐浓度在带电单体和三价盐离子的竞争性吸附中起关键作用.对于接枝在带相反电荷的极板上的带电分数较高的星型链,刷子会塌缩到接枝极板上,并会产生极板表面电荷的过度补偿现象.当带电分数较低时,如果星型链所带电荷数与三价盐离子电荷数相同,即使在很低的盐浓度下,极板对三价盐离子的吸引能力也高于对星型链中的带电单体的吸引.结果表明,星型链在带电分数较低的情况下,三价盐离子的加入不会导致接枝电极表面电荷的过度补偿.此外,本文还研究了三价盐离子对电场作用下星型刷的拉伸的影响.  相似文献   

4.
金孔阵列电介质与金电介质孔阵列的强透射特性   总被引:2,自引:0,他引:2  
杨宏艳  肖功利 《光学学报》2012,32(11):1130002
采用时域有限差分(FDTD)法研究了金膜厚度、电介质折射率及其厚度对金孔阵列电介质与金电介质孔阵列两种结构强透射特性的影响。研究发现这两种结构都具有较好的强透射特性,这表明光与金膜表面自由电子的电荷密度波耦合成表面等离子激元(SPP),对增强透射起到了关键作用。金膜厚度是影响强透射特性的主要因素,其衰减长度为35 nm;而与金膜相邻的电介质膜厚度对强透射特性影响极小。电介质折射率大小对强透射特性影响明显,折射率为1.8时能够获得较好的强透射特性。  相似文献   

5.
基于非线性泊松-玻尔兹曼方程,推导了混合电解质溶液中考虑介电饱和度的表面电位的解析表达式.近似解析解和精确数值解计算出的表面电位在很大范围的电荷密度和离子强度条件下均具有很好的一致性.当表面电荷密度大于0.30 C/m~2时,介电饱和度对表面电位的影响变得尤为重要;当表面电荷密度小于0.30 C/m~2时,可忽略介电饱和度的影响,即基于经典泊松-玻尔兹曼方程可获得有效的表面电位解析模型.因此,0.3 C/m~2可作为是否考虑介电饱和度的颗粒临界表面电荷密度值.在低表面电荷密度时,考虑介质饱和度的表面电位解析模型可自然回归到经典泊松-玻尔兹曼理论的结果,得到的表面电位可以正确地预测一价和二价反离子之间的吸附选择性.  相似文献   

6.
基于非线性泊松-玻尔兹曼方程,推导了混合电解质溶液中考虑介电饱和度的表面电位的解析表达式. 近似解析解和精确数值解计算出的表面电位在很大范围的电荷密度和离子强度条件下均具有很好的一致性. 当表面电荷密度大于0.30 C/m2 时,介电饱和度对表面电位的影响变得尤为重要;当表面电荷密度小于0.30 C/m2时,可忽略介电饱和度的影响,即基于经典泊松-玻尔兹曼方程可获得有效的表面电位解析模型. 因此,0.3 C/m2可作为是否考虑介电饱和度的颗粒临界表面电荷密度值. 在低表面电荷密度时,考虑介质饱和度的表面电位解析模型可自然回归到经典泊松-玻尔兹曼理论的结果,得到的表面电位可以正确地预测一价和二价反离子之间的吸附选择性.  相似文献   

7.
利用半经典开轨道理论,研究了GaAs电介质表面对氢负离子在磁场中的光剥离干涉图样的作用,推导并计算了本体系下的光剥离电子流通量,主要研究GaAs电介质表面到离子的距离不同对电子通量的影响。结果表明,电介质表面到离子的距离可以改变电子通量分布中的振荡结构,影响探测平面上形成的干涉图样的分布。因此,可以通过改变电介质表面到离子的距离来调控剥离电子的通量和干涉图样分布。  相似文献   

8.
环氧纳米复合电介质具有抑制空间电荷积聚、高电阻率、高击穿强度等优异性能,对直流电力设备的发展具有重要的作用.但纳米粒子含量对纳米复合电介质陷阱、电导率和空间电荷的影响机理尚不清楚.本文在纳米复合电介质交互区结构模型的基础上提出了计算交互区浅陷阱和深陷阱密度的方法,得到了浅陷阱和深陷阱密度随纳米粒子含量的变化关系.随着纳米粒子含量的增加,浅陷阱密度逐渐增大,深陷阱先增加然后由于交互区重叠的影响而逐渐减少.研究了纳米粒子含量对浅陷阱控制载流子迁移率的影响,发现随着纳米粒子的增多,浅陷阱大幅增多,浅陷阱之间的平均间距迅速减小,导致载流子更容易在浅陷阱间跳跃迁移,浅陷阱控制载流子迁移率增大.建立了纳米复合电介质的电荷输运模型,采用电荷输运模型计算研究了环氧/二氧化钛纳米复合电介质的空间电荷分布、电场分布和电导率特性.发现在纳米粒子添加量较小时,交互区的深陷阱对电导的影响起主导作用;纳米粒子添加量进一步增加,浅陷阱对电导的影响将起到主要作用.  相似文献   

9.
采用基于密度泛函理论的第一性原理方法,构建了不同活性质吸附氢修饰和氧修饰金刚石(100)表面,计算了氢修饰和氧修饰金刚石(100)表面吸附体系的平衡态几何构型和态密度.结果表明,氢修饰金刚石表面与H_3O~+离子间具有较强的相互作用,在费米能级附近出现浅受主能级,电荷会发生从氢修饰金刚石表面向吸附H_3O~+离子迁移,从而呈现p型导电性;当吸附物为H_3O~+离子和H_2O分子混合吸附时,能带结构发生改变,但是其导电性并没有发生变化.相比之下,含水分子和H_3O~+离子的吸附物在氧修饰金刚石表面将发生分解,不能稳定存在,吸附体系仍呈现绝缘性质.  相似文献   

10.
高电荷态离子126Xeq+与Ti固体表面作用的激发光谱   总被引:1,自引:1,他引:0       下载免费PDF全文
报道用150keV的高电荷态离子126Xeq+(6≤q≤30)轰击Ti固 体表面产生2 00—1000nm波段发射光谱的实验结果.结果显示,用电荷态足够高的离子作光谱激发源,无 需很强的束流强度(nA量级),便可激发起样品表面的原子和离子在可见光波段的特征谱线 .当入射离子剥离度q>qc≈20时,Ti原子及其离子的特征谱线强度突然显著增强 ;不 同金属靶,特征谱线突然增强的qc值不同.理论分析表明,这与q大于此临界值 后,单电子转移释放能量激发靶材料传导电子气体的表面等离激元密切相关. 关键词: 低速高电荷态离子 特征谱线 经典过垒模型 等离激元  相似文献   

11.
We present a scaling theory for the adsorption of a weakly charged polyelectrolyte chain in a poor solvent onto an oppositely charged surface. Depending on the fraction of charged monomers and on the solvent quality for uncharged monomers, the globule in the bulk of the solution has either a spherical conformation or a necklace structure. At sufficiently high surface charge density, a chain in the globular conformation adsorbs in a flat pancake conformation due to the Coulombic attraction to the oppositely charged surface. Different adsorption regimes are predicted depending on two screening lengths (the Debye screening length monitored by the salt concentration and the Gouy-Chapman length monitored by the surface charge density), on the degree of ionization of the polymer and on the solvent strength. At low bulk ionic strength, an increase in the surface charge density may induce a transition from an adsorbed necklace structure to a uniform pancake due to the enhanced screening of the intra-chain Coulombic repulsion by the counterions localized near the surface. Received 12 April 2001  相似文献   

12.
The effect of ionic size on the diffuse layer characteristics of a spherical double layer is studied using Monte Carlo simulation and density functional theory within the restricted primitive model. The macroion is modelled as an impenetrable charged hard sphere carrying a uniform surface charge density, surrounded by the small ions represented as charged hard spheres and the solvent is taken as a dielectric continuum. The density functional theory uses a partially perturbative scheme, where the hard sphere contribution to the one particle correlation function is evaluated using weighted density approximation and the ionic interactions are calculated using a second-order functional Taylor expansion with respect to a bulk electrolyte. The Monte Carlo simulations have been performed in the canonical ensemble. The detailed comparison is made in terms of zeta potentials for a wide range of physical conditions including different ionic diameters. The zeta potentials show a maximum or a minimum with respect to the polyion surface charge density for a divalent counterion. The ionic distribution profiles show considerable variations with the concentration of the electrolyte, the valency of the ions constituting the electrolyte, and the ionic size. This model study shows clear manipulations of ionic size and charge correlations in dictating the overall structure of the diffuse layer.  相似文献   

13.
Using Monte Carlo results as a reference, a classical density functional theory (CDFT) is shown to reliably predict the forces between two heterogeneously charged surfaces immersed in an electrolyte solution, whereas the Poisson–Boltzmann (PB) theory is demonstrated to deteriorate obviously for the same system even if the system parameters considered fall within the validity range of the PB theory in the homogeneously charged surfaces. By applying the tested CDFT, we study the effective electrostatic potential of mean force (EPMF) between two face–face planar and hard surfaces of zero net charge on which positive and negative charges are separated and considered to present as discontinuous spots on the inside edges of the two surfaces. Main conclusions are summarized as follows: (i) strength of the EPMF in the surface charge separation case is very sensitively and positively correlated with the surface charge separation level and valency of the salt ion. Particularly, the charge separation level and the salt ion valency have a synergistic effect, which makes high limit of the EPMF strength in the surface charge separation case significantly go beyond that of the ideal homogeneously charged surface counterpart at average surface charge density similar to the average surface positive or negative charge density in the charge separation case. (ii) The surface charge distribution patterns mainly influence sign of the EPMF: symmetrical and asymmetrical patterns induce repulsive and attractive (at small distances) EPMF, respectively; but with low valency salt ions and low charge separation level the opposite may be the case. With simultaneous presence of both higher valency cation and anion, the EPMF can be repulsive at intermediate distances for asymmetrical patterns. (iii) Salt ion size has a significant impact, which makes the EPMF tend to become more and more repulsive with the ion diameter regardless of the surface charge distribution patterns and the valency of the salt ion; whereas if the 1:1 type electrolyte and the symmetrical patterns are considered, then the opposite may be the case. All of these findings can be explained self-consistently from several perspectives: an excess adsorption of the salt ions (induced by the surface charge separation) serving to raise the osmotic pressure between the plates, configuration fine-tuning in the thinner ion adsorption layer driven by the energy decrease principle, direct Coulombic interactions operating between charged objects on the two face-to-face plates involved, and net charge strength in the ion adsorption layer responsible for the net electrostatic repulsion.  相似文献   

14.
The problem of charged polymer chains (polyelectrolytes) as they adsorb on a planar surface is addressed theoretically. We review the basic mechanisms and theory underlying polyelectrolyte adsorption on a single surface in two situations: adsorption of a single charged chain, and adsorption from a bulk solution in θ solvent conditions. The behavior of flexible and semi-rigid chains is discussed separately and is expressed as function of the polymer and surface charges, ionic strength of the solution and polymer bulk concentration. We mainly review mean-field results and briefly comment about fluctuation effects. The phenomenon of polyelectrolyte adsorption on a planar surface as presented here is of relevance to the stabilization of colloidal suspensions. In this respect we also mention calculations of the inter-plate force between two planar surfaces in presence of polyelectrolyte. Finally, we comment on the problem of charge overcompensation and its implication to multi-layers formation of alternating positive and negative polyelectrolytes on planar surfaces and colloidal particles.  相似文献   

15.
Using Monte Carlo simulations, we study the counterion distribution close to planar charged walls in two geometries: i) when only one charged wall is present and the counterions are confined to one half-space, and ii) when the counterions are confined between two equally charged walls. In both cases the surface charge is smeared out and the dielectric constant is the same everywhere. We obtain the counterion density profile and compare it with both the Poisson-Boltzmann theory (asymptotically exact in the limit of weak coupling, i.e. low surface charge, high temperature and low counterion valence) and the strong-coupling theory (valid in the opposite limit of high surface charge, low temperature and high counterion valence) and with previously calculated correction terms to both theories for different values of the coupling parameter, thereby establishing the domain of validity of the asymptotic limits. Gaussian corrections to the leading Poisson-Boltzmann behavior (obtained via a systematic loop expansion) in general perform quite poorly: At coupling strengths low enough so that the Gaussian (or one-loop) correction does describe the numerical deviations from the Poisson-Boltzmann result correctly, the leading Poisson-Boltzmann term by itself matches the data within high accuracy. This reflects the slow convergence of the loop expansion. For a single charged plane, the counterion pair correlation function indicates a behavioral change from a three-dimensional, weakly correlated counterion distribution (at low coupling) to a two-dimensional, strongly correlated counterion distribution (at high coupling), which is paralleled by the specific-heat capacity which displays a rounded hump at intermediate coupling strengths. For the case of counterions confined between two equally charged walls, we analyze the inter-wall pressure and establish the complete phase diagram, featuring attraction between the walls for large enough coupling strength and at intermediate wall separation. Depending on the thermodynamic ensemble, the phase diagram exhibits a discontinuous transition where the inter-wall distance jumps to infinity (in the absence of a chemical potential coupling to the inter-wall distance, as for charged lamellae in excess solvent) or a critical point where two coexisting states with different inter-wall distance become indistinguishable (in the presence of a chemical potential, as for charged lamellae with a finite fixed solvent fraction). The attractive pressure decays with the inter-wall distance as an inverse cube, similar to analytic predictions, although the amplitude differs by an order of magnitude from previous theoretical results. Finally, we discuss in detail our simulation methods and compare the finite-size scaling behavior of different boundary conditions (periodic, minimal image and open). Received 6 November 2001  相似文献   

16.
We develop a scaling theory of polyelectrolyte adsorption at an oppositely charged surface. At low surface charge densities, the thickness of the adsorbed layer is determined by the balance between electrostatic attraction to the charged surface and chain entropy. At high surface charge densities, it is determined by the balance between electrostatic attraction and short-range monomer-monomer repulsion. These different stabilizing mechanisms result in the nonmonotonic dependence of the layer thickness on the surface charge density.  相似文献   

17.
There is abundant experimental evidence suggesting the existence of attractive interactions among identically charged polyelectrolytes in ordinary salt solutions. The presence of multivalent counterions is not required. We review the relevant literature in detail and conclude that it merits more attention than it has received. We discuss also some recent observations of a low ionic strength attraction of negatively charged DNA to the region of a negatively charged glass nanoslit where the floor of the nanoslit meets the walls, again in the absence of multivalent ions. On the theoretical side, it has become clear that purely electrostatic interactions require the presence of multivalent counterions if they are to generate like-charge attraction. Any theory of like-charge attraction in the absence of multivalent counterions must therefore contain a non-electrostatic component. We point out that counterion condensation theory, which has predicted like-charge polyelectrolyte attraction in an intermediate range of distances in ordinary 1:1 salt conditions, contains both electrostatic and non-electrostatic elements. The non-electrostatic component of the theory is the modeling constraint that the counterions fall into two explicit populations, condensed and uncondensed. As reviewed in the paper, this physically motivated constraint is supported by strong experimental evidence. We proceed to offer an explanation of the nanoslit observations by showing in an idealized model that the line of intersection of two intersecting planes is a virtual polyelectrolyte. Since we have previously developed a counterion condensation theory of attraction of two like-charged polyelectrolytes, our suggestion is that the DNA is attracted to the virtual polyelectrolytes that may be located in the nanoslit where floor meets walls. We present the detailed calculations needed to document this suggestion: an extension of previous theory to the case of polyelectrolytes with like but not identical charges; the demonstration of counterion condensation on a plane with bare charge density greater than an explicitly exhibited critical value; a calculation of the free energy of the plane; a calculation of the interaction of a line charge polyelectrolyte with a like-charged plane; and the detailed demonstration that the line of intersection of two planes is a virtual polyelectrolyte.  相似文献   

18.
Size and curvature are important determinants of particle wettability, in addition to surface chemistry and texture. Hydration free energy of a nonpolar solute scales with volume for small solutes and with surface area for larger ones. If the solute acquires a surface charge, the scaling regimes can be affected, with size-dependence of the charge playing a critical role. For isolated particles grown at fixed surface charge density, the Born approximation gives scaling of hydration free energy with volume. We consider a distinctly different but practically important scenario, where the charged solute and surrounding counterions are dissolved together. For this process, our molecular simulations demonstrate the electrostatic contribution to the solvation free energy, calculated per unit area of the solute, to be virtually independent of solute size. We explain this behavior in terms of counterion shielding effect on the curvature-dependent solute energy in the dehydrated state, an effect closely balanced by the influence of dielectric screening in water. As a result, for moderate surface charge densities of the solute, the net electrostatic contribution is dominated by counterion solvation, and scales with solute surface area independently of the ionic strength in the solution.  相似文献   

19.
The adsorption of flexible polyelectrolyte (PE) with the smeared charge distribution onto an oppositely charged sphere immersed in a PE solution is studied numerically with the continuum self-consistent field theory. The power law scaling relationships between the boundary layer thickness and the surface charge density and the charge fraction of PE chains revealed in the study are in good agreement with the existing analytical result. The curvature effect on the degree of charge compensation of the total amount of charges on the adsorbed PE chains over the surface charges is examined, and a clear understanding of it based on the dependences of the degree of charge compensation on the surface charge density and the charge fraction of PE chains is established.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号