首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The reaction of 1H‐imidazole‐4‐carbohydrazides 1 , which are conveniently accessible by treatment of the corresponding esters with NH2NH2?H2O, with isothiocyanates in refluxing EtOH led to thiosemicarbazides (=hydrazinecarbothioamides) 4 in high yields (Scheme 2). Whereas 4 in boiling aqueous NaOH yielded 2,4‐dihydro‐3H‐1,2,4‐triazole‐3‐thiones 5 , the reaction in concentrated H2SO4 at room temperature gave 1,3,4‐thiadiazol‐2‐amines 6 . Similarly, the reaction of 1 with butyl isocyanate led to semicarbazides 7 , which, under basic conditions, undergo cyclization to give 2,4‐dihydro‐3H‐1,2,4‐triazol‐3‐ones 8 (Scheme 3). Treatment of 1 with Ac2O yielded the diacylhydrazine derivatives 9 exclusively, and the alternative isomerization of 1 to imidazol‐2‐ones was not observed (Scheme 4). It is important to note that, in all these transformations, the imidazole N‐oxide residue is retained. Furthermore, it was shown that imidazole N‐oxides bearing a 1,2,4‐triazole‐3‐thione or 1,3,4‐thiadiazol‐2‐amine moiety undergo the S‐transfer reaction to give bis‐heterocyclic 1H‐imidazole‐2‐thiones 11 by treatment with 2,2,4,4‐tetramethylcyclobutane‐1,3‐dithione (Scheme 5).  相似文献   

2.
The reaction of 1,4,5‐trisubstituted 1H‐imidazole 3‐oxides 1 with Ac2O in CH2Cl2 at 0 – 5° leads to the corresponding 1,3‐dihydro‐2H‐imidazol‐2‐ones 4 in good yields. In refluxing Ac2O, the N‐oxides 1 are transformed to N‐acetylated 1,3‐dihydro‐2H‐imidazol‐2‐ones 5 . The proposed mechanisms for these reactions are analogous to those for N‐oxides of 6‐membered heterocycles (Scheme 2). A smooth synthesis of 1H‐imidazole‐2‐carbonitriles 2 starting with 1 is achieved by treatment with trimethylsilanecarbonitrile (Me3SiCN) in CH2Cl2 at 0 – 5° (Scheme 3).  相似文献   

3.
When 2,3‐dichloro‐1,4‐naphthoquinone (DCHNQ) ( 1 ) is allowed to react with 1‐phenylbiguanide (PBG) ( 2 ), 4‐chloro‐2,5‐dihydro‐2,5‐dioxonaphtho[1,2‐d]imidazole‐3‐carboxylic acid phenyl amide ( 4 ), 6‐chloro‐8‐phenylamino‐9H‐7,9,11‐triaza‐cyclohepta[a]naphthalene‐5,10‐dione ( 5 ) and 4‐dimethyl‐amino‐5,10‐dioxo‐2‐phenylimino‐5,10‐dihydro‐2H‐benzo[g]quinazoline‐1‐carboxylic acid amide ( 6 ) were obtained. While on reacting 1 with 2‐guanidinebenzimidazole (GBI) ( 3 ) the products are 3‐(1H‐benzoimidazol‐2‐yl)‐4‐chloro‐3H‐naphtho[1,2‐d]imidazole‐2,5‐dione ( 7 ) and 3‐[3‐(1H‐benzoimidazol‐2‐yl)‐ureido]‐1,4‐dioxo‐1,4‐dihydronaphthalene‐2‐carboxylic acid dimethylamide ( 8 ).  相似文献   

4.
On Rearrangements by Cyclialkylations of Arylpentanols to 2,3‐Dihydro‐1 H ‐indene Derivatives. Part 2. An Unexpected Rearrangement by the Acid‐Catalyzed Cyclialkylation of 2,4‐Dimethyl‐2‐phenylpentan‐3‐ol under Formation of trans ‐2,3‐Dihydro‐1,1,2,3‐tetramethyl‐1 H ‐indene The acid catalyzed‐cyclialkylation of 4‐(2‐chloro‐phenyl)‐2,4‐dimethylpentan‐2‐ol ( 1 ) gave two products: 4‐chloro‐2,3‐dihydro‐1,1,3,3‐tetramethyl‐1H‐indene ( 2 ) and also trans‐4‐chloro‐2,3‐dihydro‐1,1,2,3‐tetramethyl‐1H‐indene ( 3 ). A mechanism was proposed in Part 1 (cf. Scheme 1) for this unexpected rearrangement. This mechanism would mainly be supported by the result of the cyclialkylation of 2,4‐dimethyl‐2‐phenylpentan‐3‐ol ( 4 ), which, with respect to the similarity of ion II in Scheme 1 and ion V in Scheme 2, should give only product 5 . This was indeed the experimental result of this cyclialkylation. But the result of the cyclialkylation of 1,1,1,2′,2′,2′‐hexadeuterated isomer [2H6]‐ 4 of 4 (cf. Scheme 3) requires a different mechanism as for the cyclialkylation of 1 . Such a mechanism is proposed in Schemes 5 and 6. It gives a satisfactory explanation of the experimental results and is supported by the result of the cyclialkylation of 2,4‐dimethyl‐3‐phenylpentan‐3‐ol ( 9 ; Scheme 7). The alternative migration of a Ph or of an i‐Pr group (cf. Scheme 6) is under further investigation.  相似文献   

5.
The synthesis of derivatives of 2,3‐dihydroimidazo[1,5,4‐ef][1,2,5]benzothiadiazepin‐6(4H,7H)‐thione 1,1‐dioxide is reported starting from N‐substituted ethyl 2‐(5‐chloro‐2‐nitrobenzenesulfonamido)‐2‐alkyl‐acetates. Fundamental steps of the synthetic pathway were: i) intramolecular cyclization of N‐substituted 2‐(2‐amino‐5‐chlorobenzenesulfonamido)‐2‐alkylacetic acids in the presence of N‐(3‐dimethyl‐aminopropyl)‐N′‐ethyl carbodiimide hydrochloride‐N,N‐dimethylaminopyridine complex; ii) building of imidazole ring from 2‐alkyl‐8‐chloro‐2,3‐dihydro‐3‐methyl‐1,2,5‐benzothiadiazepin‐4(5H)‐one 1,1‐dioxide to achieve 2‐alkyl‐9‐chloro‐2,3‐dihydro‐3‐methylimidazo[1,5,4‐ef][1,2,5]benzothiadiazepin‐6(4H,7H)‐one 1,1‐dioxide; iii) preparation of thiocarbonyl derivative by treatment with Lawesson's reagent. Introduction of a 3‐methyl‐2‐butenyl chain at position 2 of above imidazobenzothiadiazepinone required protection at the 7 position with thermally removable tert‐butoxycarbonyl moiety, due to the fact that alkylation of unprotected structure proved to be regioselective for the 7 position.  相似文献   

6.
On Rearrangements by Cyclialkylations of Arylpentanols to 2,3‐Dihydro‐1 H ‐indene Derivatives. Part 1. An Unexpected Rearrangement by the Acid‐Catalyzed Cyclialkylation of 4‐(2‐Chlorophenyl)‐2,4‐dimethyl pentan‐2‐ol under Formation of trans ‐4‐Chloro‐2,3‐dihydro‐1,1,2,3‐tetramethyl‐1 H ‐indene The acid‐catalyzed cyclialkylation of 2,4‐dimethyl‐4‐phenylpentan‐2‐ol led exclusively to the expected product, 2,3‐dihydro‐1,1,3,3‐tetramethyl‐1H‐indene. However, analogous cyclialkylation of 4‐(2‐chlorophenyl)‐2,4‐dimethylpentan‐2‐ol ( 1 ) gave a ca. 1 : 1 mixture of 4‐chloro‐2,3‐dihydro‐1,1,3,3‐tetramethyl‐1H‐indene ( 2 ) and of trans‐4‐chloro‐2,3‐dihydro‐1,1,2,3‐tetramethyl‐1H‐indene ( 3 ; Scheme 1). The specific action of the Cl substituent is investigated and a mechanism for this unexpected frame‐work transposition proposed.  相似文献   

7.
On Rearrangements by Cyclialkylations of Arylpentanols to 2,3‐Dihydro‐1 H ‐indene Derivatives. Part 4. The Acid‐Catalyzed Cyclialkylation of 2,4‐Dimethyl‐2‐phenyl[3‐ 13 C]pentan‐3‐ol The cyclialkylation of 2,4‐dimethyl‐2‐phenyl[3‐13C]pentan‐3‐ol ( 4 ) gives only 2,3‐dihydro‐1,1,2,3‐tetramethyl‐1H‐[3‐13C]indene ( 6 ) (cf. Scheme 2) and not a trace of the isotopomeric 2,3‐dihydro‐1,1,2,3‐tetramethyl‐1H‐[2‐13C]indene ( 5 ). The mechanism proposed in [3] for the cyclialkylation of 4 (cf. Scheme 2, Path A) has, therefore, to be abandoned. The mechanism of Scheme 2, Path B, is proposed and may be considered as definitively established.  相似文献   

8.
On Rearrangements by Cyclialkylations of Arylpentanols to 2,3‐Dihydro‐1 H ‐indene Derivatives. Part 3. The Acid‐Catalyzed Cyclialkylation of 3,4‐Dimethyl‐ and 3‐([ 2 H 3 ]Methyl)‐4‐methyl‐3‐phenylpentan‐2‐ol The cyclialkylation of 2‐([2H3]methyl)‐4‐methyl‐4‐phenyl[1,1,1‐2H3]pentan‐3‐ol ( 4 ) yielded a 1 : 1 mixture of 1,1‐di([2H3]methyl)‐2,3‐dimethyl‐1H‐indene ( 5 ) and of 2,3‐dihydro‐2,3‐di([2H3]methyl)‐1,1‐dimethyl‐1H‐indene ( 6 ) (Scheme 1) [1]. However, it was not clear whether the transposition takes place through the successive migration of a Ph, a Me and again the Ph group (Scheme 2, Path A: shift IV → VII → VIIa ) or through Ph‐, Me‐, and then i‐Pr‐group (Scheme 2, Path B: IV → VII → VIIb ). The cyclialkylation of 3‐([2H3]methyl)‐4‐methyl‐3‐phenylpentan‐2‐ol ( 7 ) yielded only one product, the 2,3‐dihydro‐2‐([2H3]methyl)‐1,1,3‐trimethyl‐1H‐indene ( 8 ), in accordance with the migrations according to Path A. This result is also a support for the total mechanism proposed for the cyclialkylation of 4 (Scheme 2). The transition of a tertiary to a secondary carbenium ion is not definitely ensured (see [1]).  相似文献   

9.
The four oligosulfanes, bis(1‐chloro‐2,2,4,4‐tetra­methyl‐3‐oxo­cyclo­butan‐1‐yl)­disulfane, C16H24Cl2O2S2, (III), 1,3‐bis(1‐chloro‐2,2,4,4‐tetra­methyl‐3‐oxo­cyclo­butan‐1‐yl)­trisulfane, C16H24Cl2O2S3, (V), 1,4‐bis(1‐chloro‐2,2,4,4‐tetra­methyl‐3‐oxo­cyclo­butan‐1‐yl)­tetrasulfane, C16H24Cl2O2S4, (VII), and 1,6‐bis(1‐chloro‐2,2,4,4‐tetra­methyl‐3‐oxo­cyclo­butan‐1‐yl)­hexasul­fane, C16H24Cl2O2S6, (VIII), all have similar geometric parameters, with the C—C bond lengths involving the chloro‐substituted cyclo­butanyl C atom being elongated to about 1.59 Å. There are two mol­ecules in the asymmetric units of the tri‐ and tetrasulfanes, and the mol­ecules in the latter compound have local C2 symmetry. The mol­ecule of the hexasulfane has crystallographic C2 symmetry. Most of the cyclo­butanyl rings are not perfectly planar and have slight but varying degrees of distortion towards a flattened tetrahedron. The polysulfane chain in each structure has a helical conformation, with each additional S atom in the chain adding approximately one quarter of a turn to the helix.  相似文献   

10.
The reaction of aldimines with α‐(hydroxyimino) ketones of type 10 (1,2‐diketone monooximes) was used to prepare 2‐unsubstituted imidazole 3‐oxides 11 bearing an alkanol chain at N(1) (Scheme 2, Table 1). These products were transformed into the corresponding 2H‐imidazol‐2‐ones 13 and 2H‐imidazole‐2‐thiones 14 by treatment with Ac2O and 2,2,4,4‐tetramethylcyclobutane‐1,3‐dithione, respectively (Scheme 3). The three‐component reaction of 10 , formaldehyde, and an alkane‐1,ω‐diamine 15 gave the bis[1H‐imidazole 3‐oxides] 16 (Scheme 4, Table 2). With Ac2O, 2,2,4,4‐tetramethylcyclobutane‐1,3‐dithione or Raney‐Ni, the latter reacted to give the corresponding bis[2H‐imidazol‐2‐ones] 19 and 20 , bis[2H‐imidazol‐2‐thione] 21 , and bis[imidazole] 22 , respectively (Schemes 5 and 6). The structures of 11a and 16b were established by X‐ray crystallography.  相似文献   

11.
The reactions of thiocarbonyl compounds with cis‐2,3‐dimethyloxirane ( 1a ) in CH2Cl2 in the presence of BF3⋅Et2O or SnCl4 led to trans‐4,5‐dimethyl‐1,3‐oxathiolanes, whereas with trans‐2,3‐dimethyloxirane ( 1b ) cis‐4,5‐dimethyl‐1,3‐oxathiolanes were formed. With the stronger Lewis acid SnCl4, the formation of side‐products was also observed. In the case of 1,3‐thiazole‐5(4H)‐thione 2 , these side‐products are the corresponding 1,3‐thiazol‐5(4H)‐one 5 and the 1 : 2 adduct 8 (Schemes 2 – 4). Their formation can be rationalized by the decomposition of the initially formed spirocyclic 1,3‐oxathiolane and by a second addition onto the C=N bond of the 1 : 1 adduct, respectively. The secondary epimerization by inversion of the configuration of the spiro‐C‐atom (Schemes 5 – 7) can be explained by a Lewis‐acid‐catalyzed ring opening of the 1,3‐oxathiolane ring and subsequent ring closure to the thermodynamically more stable isomer (Scheme 12). In the case of 2,2,4,4‐tetramethyl‐3‐thioxocyclobutanone ( 20 ), apart from the expected spirocyclic 1,3‐oxathiolanes 21 and 23 , dispirocyclic 1 : 2 adducts were formed by a secondary addition onto the C=O group of the four‐membered ring (Schemes 9 and 10).  相似文献   

12.
Six derivatives of 4‐amino‐1,5‐dimethyl‐2‐phenyl‐2,3‐dihydro‐1H‐pyrazol‐3‐one (4‐aminoantipyrine), C11H13N3O, (I), have been synthesized and structurally characterized to investigate the changes in the observed hydrogen‐bonding motifs compared to the original 4‐aminoantipyrine. The derivatives were synthesized from the reactions of 4‐aminoantipyrine with various aldehyde‐, ketone‐ and ester‐containing molecules, producing (Z)‐methyl 3‐[(1,5‐dimethyl‐3‐oxo‐2‐phenyl‐2,3‐dihydro‐1H‐pyrazol‐4‐yl)amino]but‐2‐enoate, C16H19N3O3, (II), (Z)‐ethyl 3‐[(1,5‐dimethyl‐3‐oxo‐2‐phenyl‐2,3‐dihydro‐1H‐pyrazol‐4‐yl)amino]but‐2‐enoate, C17H21N3O3, (III), ethyl 2‐[(1,5‐dimethyl‐3‐oxo‐2‐phenyl‐2,3‐dihydro‐1H‐pyrazol‐4‐yl)amino]cyclohex‐1‐enecarboxylate, C20H25N3O3, (IV), (Z)‐ethyl 3‐[(1,5‐dimethyl‐3‐oxo‐2‐phenyl‐2,3‐dihydro‐1H‐pyrazol‐4‐yl)amino]‐3‐phenylacrylate, C22H23N3O3, (V), 2‐cyano‐N‐(1,5‐dimethyl‐3‐oxo‐2‐phenyl‐2,3‐dihydro‐1H‐pyrazol‐4‐yl)acetamide, C14H14N4O2, (VI), and (E)‐methyl 4‐{[(1,5‐dimethyl‐3‐oxo‐2‐phenyl‐2,3‐dihydro‐1H‐pyrazol‐4‐yl)amino]methyl}benzoate, C20H19N3O3, (VII). The asymmetric units of all these compounds have one molecule on a general position. The hydrogen bonding in (I) forms chains of molecules via intermolecular N—H...O hydrogen bonds around a crystallographic sixfold screw axis. In contrast, the formation of enamines for all derived compounds except (VII) favours the formation of a six‐membered intramolecular N—H...O hydrogen‐bonded ring in (II)–(V) and an intermolecular N—H...O hydrogen bond in (VI), whereas there is an intramolecular C—H...O hydrogen bond in the structure of imine (VII). All the reported compounds, except for (II), feature π–π interactions, while C—H...π interactions are observed in (II), C—H...O interactions are observed in (I), (III), (V) and (VI), and a C—O...π interaction is observed in (II).  相似文献   

13.
The three‐component reaction of (R)‐ or (S)‐1‐phenylethylamine ( 6 ), formaldehyde, and an α‐(hydroxyimino) ketone 5 , i.e., 3‐(hydroxyimino)butan‐2‐one ( 5a ) or 2‐(hydroxyimino)‐1,2‐diphenylethanone ( 5b ), yields the corresponding enantiomerically pure 1‐(1‐phenylethyl)‐1H‐imidazole 3‐oxide 7 in high yield (Schemes 2 and 3). The reactions are carried out either in MeOH or in AcOH. Smooth transformations of the N‐oxides into optically active 1‐(1‐phenylethyl)‐1H‐imidazoles 10 and 2,3‐dihydro‐1‐(1‐phenylethyl)‐1H‐imidazole‐2‐thiones 11 are achieved by treatment of 7 with Raney‐Ni and 2,2,4,4‐tetramethyl‐3‐thioxocyclobutanone ( 12 ), respectively (Scheme 4).  相似文献   

14.
4‐Antipyrine [4‐amino‐1,5‐dimethyl‐2‐phenyl‐1H‐pyrazol‐3(2H)‐one] and its derivatives exhibit a range of biological activities, including analgesic, antibacterial and anti‐inflammatory, and new examples are always of potential interest and value. 2‐(4‐Chlorophenyl)‐N‐(1,5‐dimethyl‐3‐oxo‐2‐phenyl‐2,3‐dihydro‐1H‐pyrazol‐4‐yl)acetamide, C19H18ClN3O2, (I), crystallizes with Z′ = 2 in the space group P, whereas its positional isomer 2‐(2‐chlorophenyl)‐N‐(1,5‐dimethyl‐3‐oxo‐2‐phenyl‐2,3‐dihydro‐1H‐pyrazol‐4‐yl)acetamide, (II), crystallizes with Z′ = 1 in the space group C2/c; the molecules of (II) are disordered over two sets of atomic sites having occupancies of 0.6020 (18) and 0.3980 (18). The two independent molecules of (I) adopt different molecular conformations, as do the two disorder components in (II), where the 2‐chlorophenyl substituents adopt different orientations. The molecules of (I) are linked by a combination of N—H…O and C—H…O hydrogen bonds to form centrosymmetric four‐molecule aggregates, while those of (II) are linked by the same types of hydrogen bonds forming sheets. The related compound N‐(1,5‐dimethyl‐3‐oxo‐2‐phenyl‐2,3‐dihydro‐1H‐pyrazol‐4‐yl)‐2‐(3‐methoxyphenyl)acetamide, C20H21N3O3, (III), is isomorphous with (I) but not strictly isostructural; again the two independent molecules adopt different molecular conformations, and the molecules are linked by N—H…O and C—H…O hydrogen bonds to form ribbons. Comparisons are made with some related structures, indicating that a hydrogen‐bonded R22(10) ring is the common structural motif.  相似文献   

15.
The three title compounds, namely 4‐phenyl‐1H‐imidazolium hexa‐μ2‐chloro‐chloro‐μ4‐oxo‐tris­(4‐phenyl‐1H‐imidazole‐κN1)­tetra­copper(II) monohydrate, (C9H9N2)[Cu4Cl7O(C9H8N2)3]·H2O, hexa‐μ2‐chloro‐μ4‐oxo‐tetra­kis­(pyridine N‐oxide‐κO)tetra­copper(II), [Cu4Cl6O(C5H5NO)4], and hexa‐μ2‐chloro‐tetra­kis(2‐methyl‐1H‐imidazole‐κN1)‐μ4‐oxo‐tetra­copper(II) methanol trisolvate, [Cu4Cl6O(C4H6N2)4]·3CH4O, exhibit the same Cu4OCl6 framework, where the O atom at the centre of an almost regular tetra­hedron bridges four copper cations at the corners. This group is in turn surrounded by a Cl6 octa­hedron, leading to a rather globular species. This special arrangement of the CuII cations results in a diversity of magnetic behaviours.  相似文献   

16.
A novel one‐pot diastereoselective synthesis of trans‐6‐aryl‐5‐hydroxy‐2,3‐dihydro[2,3‐c]pyrazol‐4(1H)‐ones 3a , 3b , 3c , 3d , 3e , 3f , 3g , 3h is described via the Darzens condensation reaction of 2‐chloro‐1‐(5‐hydroxy‐3‐methyl‐1‐phenyl‐1H‐pyrazol‐4‐yl)ethanone ( 2 ) with different aromatic aldehydes in aqueous basic medium. The structures of the compounds prepared were determined by analytical and spectral analyses.  相似文献   

17.
Dibenz[b,f]azepine (DBA) is a privileged 6‐7‐6 tricyclic ring system of importance in both organic and medicinal chemistry. Benzo[b]pyrimido[5,4‐f]azepines (BPAs), which also contain a privileged 6‐7‐6 ring system, are less well investigated, probably because of a lack of straightforward and versatile methods for their synthesis. A simple and versatile synthetic approach to BPAs based on intramolecular Friedel–Crafts alkylation has been developed. A group of closely‐related benzo[b]pyrimido[5,4‐f]azepine derivatives, namely (6RS)‐4‐chloro‐6,11‐dimethyl‐6,11‐dihydro‐5H‐benzo[b]pyrimido[5,4‐f]azepine, C14H14ClN3, (I), (6RS)‐4‐chloro‐8‐hydroxy‐6,11‐dimethyl‐6,11‐dihydro‐5H‐benzo[b]pyrimido[5,4‐f]azepine, C14H14ClN3O, (II), (6RS)‐4‐<!?tlsb=‐0.14pt>chloro‐8‐methoxy‐6,11‐dimethyl‐6,11‐dihydro‐5H‐benzo[b]pyrimido[5,4‐f]azepine, C15H16ClN3O, (III), and (6RS)‐4‐chloro‐8‐methoxy‐6,11‐dimethyl‐2‐phenyl‐6,11‐dihydro‐5H‐benzo[b]pyrimido[5,4‐f]azepine, C21H20ClN3O, (IV), has been prepared and their structures compared with the recently published structure [Acosta‐Quintero et al. (2015). Eur. J. Org. Chem. pp. 5360–5369] of (6RS)‐4‐chloro‐2,6,8,11‐tetramethyl‐6,11‐dihydro‐5H‐benzo[b]pyrimido[5,4‐f]azepine, (V). All five compounds crystallize as racemic mixtures and they have very similar molecular conformations, with the azepine ring adopting a boat‐type conformation in each case, although the orientation of the methoxy substituent in each of (III) and (IV) is different. The supramolecular assemblies in (II) and (IV) depend upon hydrogen bonds of the O—H...N and C—H...π(arene) types, respectively, those in (I) and (V) depend upon π–π stacking interactions involving pairs of pyrimidine rings, and that in (III) depends upon a π–π stacking interaction involving pairs of phenyl rings. Short C—Cl...π(pyrimidine) contacts are present in (I), (II) and (IV) but not in (III) or (V).  相似文献   

18.
The 1,5‐benzodiazepine ring system exhibits a puckered boat‐like conformation for all four title compounds [4‐(2‐hydroxyphenyl)‐2‐phenyl‐2,3‐dihydro‐1H‐1,5‐benzodiazepine, C21H18N2O, (I), 2‐(2,3‐dimethoxyphenyl)‐4‐(2‐hydroxyphenyl)‐2,3‐dihydro‐1H‐1,5‐benzodiazepine, C23H22N2O3, (II), 2‐(3,4‐dimethoxyphenyl)‐4‐(2‐hydroxyphenyl)‐2,3‐dihydro‐1H‐1,5‐benzodiazepine, C23H22N2O3, (III), and 2‐(2,5‐dimethoxyphenyl)‐4‐(2‐hydroxyphenyl)‐2,3‐dihydro‐1H‐1,5‐benzodiazepine, C23H22N2O3, (IV)]. The stereochemical correlation of the two C6 aromatic groups with respect to the benzodiazepine ring system is pseudo‐equatorial–equatorial for compounds (I) (the phenyl group), (II) (the 2,3‐dimethoxyphenyl group) and (III) (the 3,4‐dimethoxyphenyl group), while for (IV) (the 2,5‐dimethoxyphenyl group) the system is pseudo‐axial–equatorial. An intramolecular hydrogen bond between the hydroxyl OH group and a benzodiazepine N atom is present for all four compounds and defines a six‐membered ring, whose geometry is constant across the series. Although the molecular structures are similar, the supramolecular packing is different; compounds (I) and (IV) form chains, while (II) forms dimeric units and (III) displays a layered structure. The packing seems to depend on at least two factors: (i) the nature of the atoms defining the hydrogen bond and (ii) the number of intermolecular interactions of the types O—H...O, N—H...O, N—H...π(arene) or C—H...π(arene).  相似文献   

19.
A novel and efficient isocyanide‐based multicomponent reaction between alkyl or aryl isocyanides 1 , 2,3‐diaminomaleonitrile ( 2 ), naphthalene‐2,3‐diamines ( 6 ) or benzene‐1,2‐diamine ( 9 ), and 3‐oxopentanedioic acid ( 3 ) or Meldrum's acid ( 4 ) or ketones 7 was developed for the ecologic synthesis, at room temperature under mild conditions, of 1,6‐dihydropyrazine‐2,3‐dicarbonitriles 5a – 5f in H2O without using any catalyst, and of 3,4‐dihydrobenzo[g]quinoxalin‐2‐amine and 3,4‐dihydro‐3,3‐dimethyl‐quinoxalin‐2‐amine derivatives 8a – 8g and 10a – 10e , respectively, in the presence of a catalytic amount of p‐toluenesulfonic acid (TsOH) in EtOH, in good to excellent yields (Scheme 1).  相似文献   

20.
The complex [Rh(η3‐benzyl)(dippe)] ( 1 ; dippe=bis(diisopropylphosphino)ethane=(ethane‐1,2‐diyl)bis[diisopropylphosphine]) reacted cleanly with Mes*PH2 ( 2 ; Mes*=2,4,6‐tBu3C6H2) to provide a new Rh species [Rh(H)(dippe)(L)] ( 3 ), L being the 2,3‐dihydro‐3,3‐dimethyl‐1H‐phosphindole ligand 4 (=tBu2C6H2(CMe2CH2PH)) (Scheme 1). Complex 3 was converted to the corresponding chloride [Rh(Cl)(dippe)(L)] ( 6 ) when treated with CH2Cl2, whereas the dimeric species [Rh2{μtBu2C6H2(CMe2CH2P)}(μ‐H)(dippe)2] ( 7 ) was formed upon thermolysis in toluene (Scheme 2). The structures of 6 and 7 ⋅C7H8 were determined by X‐ray crystallography. Complexes 1 and 3 served as catalyst precursors for the dehydrogenative coupling of C−H and P−H bonds in the conversion of 2 to 4 (Scheme 3). Deuteration studies with Mes*PD2 exposed a complex series of bond‐activation pathways that appear to involve C−H activation of the dippe ligand by the Rh‐atom (Schemes 4 and 5)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号