首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, we study the existence and multiplicity of solutions for the following fractional Schr¨odinger-Poisson system:ε~(2s)(-?)~su + V(x)u + ?u = |u|~2_s~*-2 u + f(u) in R~3,ε~(2s)(-?)~s? = u~2 in R~3,(0.1)where 3/4 s 1, 2_s~*:=6/(3-2s)is the fractional critical exponent for 3-dimension, the potential V : R~3→ R is continuous and has global minima, and f is continuous and supercubic but subcritical at infinity. We prove the existence and multiplicity of solutions for System(0.1) via variational methods.  相似文献   

2.
In this paper, we mainly consider the initial boundary problem for a quasilinear parabolic equation u_t-div(|?u|~(p-2)?u) =-|u|~(β-1) u + α|u|~(q-2 )u,where p 1, β 0, q≥1 and α 0. By using Gagliardo-Nirenberg type inequality, the energy method and comparison principle, the phenomena of blowup and extinction are classified completely in the different ranges of reaction exponents.  相似文献   

3.
The authors study the following Dirichlet problem of a system involving fractional (p, q)-Laplacian operators:
$$\left\{ {\begin{array}{*{20}{c}} {\left( { - \Delta } \right)_p^su = \lambda a\left( x \right){{\left| u \right|}^{p - 2}}u + \lambda b\left( x \right){{\left| u \right|}^{\alpha - 2}}{{\left| v \right|}^\beta }u + \frac{{\mu \left( x \right)}}{{\alpha \delta }}{{\left| u \right|}^{\gamma - 2}}{{\left| v \right|}^\delta }uin\Omega ,} \\ {\left( { - \Delta } \right)_q^sv = \lambda c\left( x \right){{\left| v \right|}^{q - 2}}v + \lambda b\left( x \right){{\left| u \right|}^\alpha }{{\left| v \right|}^{\beta - 2}}v + \frac{{\mu \left( x \right)}}{{\beta \gamma }}{{\left| u \right|}^\gamma }{{\left| v \right|}^{\delta - 2}}vin\Omega ,} \\ {u = v = 0on{\mathbb{R}^N}\backslash \Omega ,} \end{array}} \right.$$
where λ > 0 is a real parameter, Ω is a bounded domain in R N , with boundary ?Ω Lipschitz continuous, s ∈ (0, 1), 1 < pq < ∞, sq < N, while (?Δ) p s u is the fractional p-Laplacian operator of u and, similarly, (?Δ) q s v is the fractional q-Laplacian operator of v. Since possibly pq, the classical definitions of the Nehari manifold for systems and of the Fibering mapping are not suitable. In this paper, the authors modify these definitions to solve the Dirichlet problem above. Then, by virtue of the properties of the first eigenvalue λ1 for a related system, they prove that there exists a positive solution for the problem when λ < λ1 by the modified definitions. Moreover, the authors obtain the bifurcation property when λ → λ1-. Finally, thanks to the Picone identity, a nonexistence result is also obtained when λ ≥ λ1.
  相似文献   

4.
We consider the stationary nonlinear magnetic Choquard equation
$(- {\rm i}\nabla+ A(x))^{2}u + V (x)u = \left(\frac{1}{|x|^{\alpha}}\ast |u|^{p}\right) |u|^{p-2}u,\quad x\in\mathbb{R}^{N}$
where A is a real-valued vector potential, V is a real-valued scalar potential, N ≥ 3, \({\alpha \in (0, N)}\) and 2 ? (α/N) < p < (2N ? α)/(N?2). We assume that both A and V are compatible with the action of some group G of linear isometries of \({\mathbb{R}^{N}}\) . We establish the existence of multiple complex valued solutions to this equation which satisfy the symmetry condition
$u(gx) = \tau(g)u(x)\quad{\rm for\, all }\ g \in G,\;x \in \mathbb{R}^{N},$
where \({\tau : G \rightarrow \mathbb{S}^{1}}\) is a given group homomorphism into the unit complex numbers.
  相似文献   

5.
In this paper we establish the following estimate:
$$\omega \left( {\left\{ {x \in {\mathbb{R}^n}:\left| {\left[ {b,T} \right]f\left( x \right)} \right| > \lambda } \right\}} \right) \leqslant \frac{{{c_T}}}{{{\varepsilon ^2}}}\int_{{\mathbb{R}^n}} {\Phi \left( {{{\left\| b \right\|}_{BMO}}\frac{{\left| {f\left( x \right)} \right|}}{\lambda }} \right){M_{L{{\left( {\log L} \right)}^{1 + \varepsilon }}}}} \omega \left( x \right)dx$$
where ω ≥ 0, 0 < ε < 1 and Φ(t) = t(1 + log+(t)). This inequality relies upon the following sharp L p estimate:
$${\left\| {\left[ {b,T} \right]f} \right\|_{{L^p}\left( \omega \right)}} \leqslant {c_T}{\left( {p'} \right)^2}{p^2}{\left( {\frac{{p - 1}}{\delta }} \right)^{\frac{1}{{p'}}}}{\left\| b \right\|_{BMO}}{\left\| f \right\|_{{L^p}\left( {{M_{L{{\left( {{{\log }_L}} \right)}^{2p - 1 + {\delta ^\omega }}}}}} \right)}}$$
where 1 < p < ∞, ω ≥ 0 and 0 < δ < 1. As a consequence we recover the following estimate essentially contained in [18]:
$$\omega \left( {\left\{ {x \in {\mathbb{R}^n}:\left| {\left[ {b,T} \right]f\left( x \right)} \right| > \lambda } \right\}} \right) \leqslant {c_T}{\left[ \omega \right]_{{A_\infty }}}{\left( {1 + {{\log }^ + }{{\left[ \omega \right]}_{{A_\infty }}}} \right)^2}\int_{{\mathbb{R}^n}} {\Phi \left( {{{\left\| b \right\|}_{BMO}}\frac{{\left| {f\left( x \right)} \right|}}{\lambda }} \right)M} \omega \left( x \right)dx.$$
We also obtain the analogue estimates for symbol-multilinear commutators for a wider class of symbols.
  相似文献   

6.
In this paper, we study the existence of positive entire large and bounded radial positive solutions for the following nonlinear system
$$\left\{ {\begin{array}{*{20}c}{S_{k_1 } \left( {\lambda \left( {D^2 u_1 } \right)} \right) + a_1 \left( {\left| x \right|} \right)\left| {\nabla u_1 } \right|^{k_1 } = p_1 \left( {\left| x \right|} \right)f_1 \left( {u_2 } \right)} & {for x \in \mathbb{R}^N ,} \\{S_{k_2 } \left( {\lambda \left( {D^2 u_2 } \right)} \right) + a_2 \left( {\left| x \right|} \right)\left| {\nabla u_2 } \right|^{k_2 } = p_2 \left( {\left| x \right|} \right)f_2 \left( {u_1 } \right)} & {for x \in \mathbb{R}^N .} \\\end{array} } \right.$$
Here \({S_{{k_i}}}\left( {\lambda \left( {{D^2}{u_i}} \right)} \right)\) is the k i -Hessian operator, a 1, p 1, f 1, a 2, p 2 and f 2 are continuous functions.
  相似文献   

7.
Let n ≥ 2 and let Ω ? ? n be an open set. We prove the boundedness of weak solutions to the problem
$$u \in W_0^1 L^\Phi \left( \Omega \right) and - div\left( {\Phi '\left( {\left| {\nabla u} \right|} \right)\frac{{\nabla u}}{{\left| {\nabla u} \right|}}} \right) + V\left( x \right)\Phi '\left( {\left| u \right|} \right)\frac{u}{{\left| u \right|}} = f\left( {x,u} \right) + \mu h\left( x \right) in \Omega ,$$
where ? is a Young function such that the space W 0 1 L Φ(Ω) is embedded into an exponential or multiple exponential Orlicz space, the nonlinearity f(x, t) has the corresponding critical growth, V(x) is a continuous potential, hL Φ(Ω) is a non-trivial continuous function and µ ≥ 0 is a small parameter. We consider two classical cases: the case of Ω being an open bounded set and the case of Ω = ? n .
  相似文献   

8.
For a polynomial P(z) of degree n having no zeros in |z| < 1, it was recently proved in [9] that
$$\left| {{z^s}{P^{\left( s \right)}}\left( z \right) + \beta \frac{{n\left( {n - 1} \right)...\left( {n - s + 1} \right)}}{{{2^s}}}P\left( z \right)} \right| \leqslant \frac{{n\left( {n - 1} \right)...\left( {n - s + 1} \right)}}{2}\left( {\left| {1 + \frac{\beta }{{{2^s}}}} \right| + \left| {\frac{\beta }{{{2^s}}}} \right|} \right)\mathop {\max }\limits_{\left| z \right| = 1} \left| {P\left( z \right)} \right|$$
for every β ∈ C with |β| ≤ 1, 1 ≤ sn and |z| = 1. In this paper, we obtain the L p mean extension of the above and other related results for the sth derivative of polynomials.
  相似文献   

9.
Let f and g be multiplicative functions of modulus 1. Assume that \( {\lim_{x \to \infty }}\frac{1}{x}\left| {\sum\nolimits_{n \leqslant x} {f(n)} } \right| = A > 0 \) and \( {\lim_{x \to \infty }}\frac{1}{x}\left| {\sum\nolimits_{n \leqslant x} {g(n)} } \right| = 0 \). We prove that, under these conditions,
$ \mathop {\lim }\limits_{x \to \infty } \frac{1}{x}\sum\limits_{n \leqslant x} {f(n)g(n + 1) = 0.}$
Concerning the Liouville function λ, we find an upper estimate for \( \frac{1}{x}\left| {\sum\limits_{n \leqslant x} {\lambda (n)\lambda (n + 1)} } \right| \) under the unproved hypothesis that L(s, χ) have Siegel zeros for an infinite sequence of L-functions.
  相似文献   

10.
Using Morse theory, truncation arguments and an abstract critical point theorem, we obtain the existence of at least three or infinitely many nontrivial solutions for the following quasilinear Schrödinger equation in a bounded smooth domain
$$\left\{ {\begin{array}{*{20}{c}} { - {\Delta _p}u - \frac{p}{{{2^{p - 1}}}}u{\Delta _p}\left( {{u^2}} \right) = f\left( {x,u} \right)\;in\;\Omega } \\ {u = 0\;on\;\partial \Omega .} \end{array}} \right.$$
(0.1)
Our main results can be viewed as a partial extension of the results of Zhang et al. in [28] and Zhou and Wu in [29] concerning the the existence of solutions to (0.1) in the case of p = 2 and a recent result of Liu and Zhao in [21] two solutions are obtained for problem 0.1.
  相似文献   

11.
This paper is dedicated to studying the following Kirchhoff-type problem
$$\begin{aligned} \left\{ \begin{array}{l@{\quad }l} -\left( a+b\int _{\mathbb {R}^3}|\nabla u|^2\mathrm {d}x\right) \triangle u+V(x)u=f(u), &{} x\in \mathbb {R}^3; \\ u\in H^1(\mathbb {R}^3), \end{array} \right. \end{aligned}$$
(0.1)
where \(a>0,\,b\ge 0\) are two constants, V(x) is differentiable and \(f\in \mathcal {C}(\mathbb {R}, \mathbb {R})\). By introducing some new tricks, we prove that the above problem admits a ground state solution of Nehari–Pohozaev type and a least energy solution under some mild assumptions on V and f. Our results generalize and improve the ones in Guo (J Differ Equ 259:2884–2902, 2015) and Li and Ye (J Differ Equ 257:566–600, 2014) and some other related literature.
  相似文献   

12.
In this article, we study the existence of infinitelymany solutions for the boundary–value problem
$$ - {\Delta _\gamma }u + a\left( x \right)u = f\left( {x,u} \right)in\Omega ,u = 0on\partial \Omega $$
, where Ω is a bounded domain with smooth boundary in ? N (N ≥ 2) and Δγ is a subelliptic operator of the form
$${\Delta _\gamma }: = \sum\limits_{j = 1}^N {{\partial _{{x_j}}}\left( {\gamma _j^2{\partial _{{x_j}}}} \right)} ,{\partial _{{x_j}}}: = \frac{\partial }{{\partial {x_j}}},\gamma = \left( {{\gamma _1},{\gamma _2}, \cdots ,\gamma N} \right)$$
. Our main tools are the local linking and the symmetric mountain pass theorem in critical point theory.
  相似文献   

13.
We study the existence and multiplicity of sign-changing solutions of the following equation
$$\begin{array}{@{}rcl@{}} \left\{\begin{array}{lllllllll} -{\Delta} u = \mu |u|^{2^{\star}-2}u+\frac{|u|^{2^{*}(t)-2}u}{|x|^{t}}+a(x)u \quad\text{in}\, {\Omega}, \\ u=0 \quad\text{on}\quad\partial{\Omega}, \end{array}\right. \end{array} $$
where Ω is a bounded domain in \(\mathbb {R}^{N}\), 0∈?Ω, all the principal curvatures of ?Ω at 0 are negative and μ≥0, a>0, N≥7, 0<t<2, \(2^{\star }=\frac {2N}{N-2}\) and \(2^{\star }(t)=\frac {2(N-t)}{N-2}\).
  相似文献   

14.
This paper is concerned with the following Kirchhoff-type equations:
$$\begin{aligned} \left\{ \begin{array}{ll} \displaystyle -\big (a+b\int _{\mathbb {R}^{3}}|\nabla u|^{2}\mathrm {d}x\big )\Delta u+ V(x)u+\mu \phi |u|^{p-2}u=f(x, u)+g(x,u), &{} \text{ in } \mathbb {R}^{3},\\ (-\Delta )^{\frac{\alpha }{2}} \phi = \mu |u|^{p}, &{} \text{ in } \mathbb {R}^{3},\\ \end{array} \right. \end{aligned}$$
where \(a>0,~b,~\mu \ge 0\) are constants, \(\alpha \in (0,3)\), \(p\in [2,3+2\alpha )\), the potential V(x) may be unbounded from below and \(\phi |u|^{p-2}u\) is a Hartree-type nonlinearity. Under some mild conditions on V(x), f(xu) and g(xu), we prove that the above system has infinitely many nontrivial solutions. Specially, our results cover the general Schrödinger equations, the Kirchhoff equations and the Schrödinger–Poisson system.
  相似文献   

15.
We consider the stochastic differential equation (SDE) of the form
$$\begin{array}{@{}rcl@{}} \left\{\begin{array}{rcl} dX^ x(t) &=& \sigma(X(t-)) dL(t) \\ X^ x(0)&=&x,\quad x\in{\mathbb{R}}^ d, \end{array}\right. \end{array} $$
where \(\sigma :{\mathbb {R}}^ d\to {\mathbb {R}}^ d\) is globally Lipschitz continuous and L={L(t):t≥0} is a Lévy process. Under this condition on σ it is well known that the above problem has a unique solution X. Let \((\mathcal {P}_{t})_{t\ge 0}\) be the Markovian semigroup associated to X defined by \(\left ({\mathcal {P}}_{t} f\right ) (x) := \mathbb {E} \left [ f(X^ x(t))\right ]\), t≥0, \(x\in {\mathbb {R}}^{d}\), \(f\in \mathcal {B}_{b}({\mathbb {R}}^{d})\). Let B be a pseudo–differential operator characterized by its symbol q. Fix \(\rho \in \mathbb {R}\). In this article we investigate under which conditions on σ, L and q there exist two constants γ>0 and C>0 such that
$$\left| B {\mathcal{P}}_{t} u \right|_{H^{\rho}_{2}} \le C \, t^{-\gamma} \,\left| u \right|_{H^{\rho}_{2}}, \quad \forall u \in {H^{\rho}_{2}}(\mathbb{R}^{d} ),\, t>0. $$
  相似文献   

16.
In this paper, we study the existence of multiple solutions for the boundary-value problem
$${\Delta _\gamma }u + f\left( {x,u} \right) = 0in\Omega ,u = 0on\partial \Omega ,$$
where Ω is a bounded domain with smooth boundary in R N (N ≥ 2) and Δ γ is the subelliptic operator of the type
$${\Delta _\gamma }u = \sum\limits_{j = 1}^N {{\partial _{{x_j}}}\left( {\gamma _j^2{\partial _{{x_j}}}u} \right)} ,{\partial _{{x_j}}}u = \frac{{\partial u}}{{\partial {x_j}}},\gamma = \left( {{\gamma _1},{\gamma _2}, \ldots ,{\gamma _N}} \right).$$
We use the three critical point theorem.
  相似文献   

17.
In this paper, we study the Pohozaev identity associated with a Henon-Lane-Emden system involving the fractional Laplacian:■in a star-shaped and bounded domain Ω for s ∈(0,1). As an application of our identity, we deduce the nonexistence of positive solutions in the critical and supercritical cases.  相似文献   

18.
This paper concerns with the existence of solutions for the following fractional Kirchhoff problem with critical nonlinearity:
$${\left( {\int {\int {_{{\mathbb{R}^{2N}}}\frac{{{{\left| {u\left( x \right) - u\left( y \right)} \right|}^2}}}{{{{\left| {x - y} \right|}^{N + 2s}}}}dxdy} } } \right)^{\theta - 1}}{\left( { - \Delta } \right)^s}u = \lambda h\left( x \right){u^{p - 1}} + {u^{2_s^* - 1}} in {\mathbb{R}^N},$$
where (?Δ) s is the fractional Laplacian operator with 0 < s < 1, 2 s * = 2N/(N ? 2s), N > 2s, p ∈ (1, 2 s *), θ ∈ [1, 2 s */2), h is a nonnegative function and λ a real positive parameter. Using the Ekeland variational principle and the mountain pass theorem, we obtain the existence and multiplicity of solutions for the above problem for suitable parameter λ > 0. Furthermore, under some appropriate assumptions, our result can be extended to the setting of a class of nonlocal integro-differential equations. The remarkable feature of this paper is the fact that the coefficient of fractional Laplace operator could be zero at zero, which implies that the above Kirchhoff problem is degenerate. Hence our results are new even in the Laplacian case.
  相似文献   

19.
We give a lower bound for the numerical index of the real space L p (µ) showing, in particular, that it is non-zero for p ≠ 2. In other words, it is shown that for every bounded linear operator T on the real space L p (µ), one has
$\sup \left\{ {|\int {|x{|^{p - 1}}{\rm{sign}}(x)Tx d\mu |:x \in {L_p}\left( \mu \right), ||x|| = 1} } \right\} \ge {{{M_p}} \over {12{\rm{e}}}}||T||$
where \({M_p} = {\max _{t \in \left[ {0,1} \right]}}{{|{t^{p - 1}} - t|} \over {1 + {t^p}}} > 0\) for every p ≠ 2. It is also shown that for every bounded linear operator T on the real space L p (µ), one has
$\sup \left\{ {\int {|x{|^{p - 1}}|Tx| d\mu :x \in {L_p}\left( \mu \right), ||x|| = 1} } \right\} \ge {1 \over {2{\rm{e}}}}||T||$
.
  相似文献   

20.
In this paper, we study the existence of positive solutions to the following Schr¨odinger system:{-?u + V_1(x)u = μ_1(x)u~3+ β(x)v~2u, x ∈R~N,-?v + V_2(x)v = μ_2(x)v~3+ β(x)u~2v, x ∈R~N,u, v ∈H~1(R~N),where N = 1, 2, 3; V_1(x) and V_2(x) are positive and continuous, but may not be well-shaped; and μ_1(x), μ_2(x)and β(x) are continuous, but may not be positive or anti-well-shaped. We prove that the system has a positive solution when the coefficients Vi(x), μ_i(x)(i = 1, 2) and β(x) satisfy some additional conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号