首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Strontium titanate single crystals 15–20 mm in diameter and 40–80 mm in length were grown by a floating zone method with radiation heating. Additional crystal heating just below the molten zone by an in-growth annealing furnace was applied in order to lower the temperature gradients and to achieve slower cooling of the grown crystal. The crystal perfection was studied with X-ray topography and double-crystal diffractometry. The most perfect crystals were grown in [0 0 1] direction with single grain rocking curve widths of about 30″ and subgrain misorientations of 1′–3′ over 10×10 mm2 areas of the boule cross-section for both (0 0 1)-, (1 1 0)- and (1 1 1)-oriented slices. Such high-quality crystal can be grown reproducibly with starting materials of 4N grade quality.  相似文献   

2.
Micro-pulling-down (μ-PD) growth apparatus was modified for fluoride crystals. PrF3 was grown with various concentrations of Ce3+ from 0–100%. The crystals were transparent and colorless (CeF3) or greenish and 3 mm in diameter and 15–50 mm in length. Neither visible inclusions nor cracks were observed. Radioluminescence spectra and decay kinetics were measured for the sample set at room temperature. In comparison to the Czochralski or Bridgman method, the μ-PD method allows to produce single crystalline material in a faster thus more economic way. Once it is established for the fluoride crystals, it is an efficient tool for exploring the field of new functional fluorides.  相似文献   

3.
In this paper, the technique of environmental scanning electron microscopy (ESEM) has been employed to investigate the surface defects of the (1 1 1) appearing face in 0.92Pb(Zn1/3Nb2/3)O3–0.08PbTiO3 (PZN–8%PT) crystals. From the ESEM images, we succeeded in observing and studying the growth hillocks and etch pits, low-angle grain boundaries, and sub-grain boundaries in (1 1 1) face, which were related to the generation of dislocation and stacking faults, respectively. On the other hand, an image of a unique multi-layer lamellar structure and fine step structure obtained in the (1 1 1) face reveals that the dominant fast growth mechanism of PZN–8%PT crystal grown by the flux method is a sub-step mechanism, unlike the screw dislocation growth mechanism.  相似文献   

4.
Good quality, large single crystals of CdSe were grown by the modified growth method (i.e., vertical unseeded vapor phase growth with multi-step purification of the starting material in the same quartz ampoule without any manual transfer between the steps). Lower temperature gradients (8–9°C/cm) at the growth interface were used for the crystal growth. As-grown CdSe crystals was characterized by X-ray diffraction, scanning electron microscopy, energy dispersive analyzer of X-rays, high-resistance instrument measurement, and etch-pit observation. It is found that there are two cleavage faces of (1 0 0) and (1 1 0) orientations on the crystal, the resistivity is about 108 Ω cm, and the density of etch pits is about 103–4/cm2. The crystal was cut into wafers and was fabricated into detectors. The detectors were tested using an 241Am radiation source. γ-ray spectra at 59.5 keV were obtained. The results demonstrated that the quality of the as-grown crystals was good. The crystals were useful for fabrication of room-temperature-operating nuclear radiation detectors. Therefore, the modified growth technique is a promising, convenient, new method for the growth of high-quality CdSe single crystals.  相似文献   

5.
Single crystals of PbMg1/3Ta2/3O3 (PMT) were grown by the flux method. The PbO–Pb3O4–B2O3 system was used as a solvent. Transparent and light yellow PMT single crystals of rectangular shape and dimensions up to 10×6×4 mm3 were obtained. For the applied growth conditions only, the crystals of the perovskite structure were grown. X-ray diffraction tests showed that at room temperature PMT exhibits cubic symmetry with lattice parameter a=4.042(1) Å. Dielectric studies pointed to relaxor properties of PMT. The characteristic broad and frequency-dependent maximum of dielectric permittivity was observed at 179.7 K (1 kHz).  相似文献   

6.
Er3+-doped and Er3+–Yb3+ co-doped yttrium aluminum borate (YAB) single crystals have been grown by the top-seeded solution growth method using a new flux system, namely NaF–MoO3–B2O3. The Er3+ concentrations were 1.3 mol% for both single doped and co-doped crystals and the Yb3+ concentration in the Er3+–Yb3+ co-doped crystal was 20.0 mol% in the raw materials. The distribution coefficients of Er3+ single doped and Er3+–Yb3+ co-doped crystals were measured. The polarized absorption and fluorescence spectra of Er3+–Yb3+ co-doped crystal were recorded and compared with those of Er3+ single doped crystal. The results demonstrate that Er3+–Yb3+ co-doped YAB crystal is a potential candidate for 1.55 μm laser materials.  相似文献   

7.
Calcium barium niobate Ca0.28Ba0.72Nb2O6 (CBN-28) crystals were grown by the Czochralski method. The effective segregation coefficients of Ca, Ba, Na elements in CBN-28 crystal growth were measured, and the rocking curve from 0 0 2 reflection of CBN-28 wafer was also measured by the high-resolution X-ray diffractometer D5005, and the full-width at half-maximum value was measured to be 70.6″. The measured dependence of dielectric constants on temperature showed the Curie temperature of the CBN-28 crystals is between 246.8 and 260 °C. Typical polarization–electric field (PE) hysteresis loops were measured at room temperature. Ferroelectric 180° domains were observed by scanning electron microscopy (SEM) on the etched (0 0 1) surface of the CBN-28 crystals. The transmittance of [0 0 1]-oriented CBN-28 crystals was measured and the result shows that optical properties of CBN-28 crystal are almost the same as those of SBN for wavelengths between 2500 and 7500 nm.  相似文献   

8.
Pb[(Zn1/3Nb2/3)0.91Ti0.09]O3 (PZNT91/9) single crystals were grown by a modified Bridgman method directly from melt using an allomeric Pb[(Mg1/3Nb2/3)0.69Ti0.31]O3 (PMNT69/31) single crystal as a seed. X-ray diffraction (XRD) measurement confirmed that the as-grown PZNT91/9 single crystals are of pure perovskite structure. Electrical properties and thermal stabilization of PZNT91/9 crystals grown directly from melt exhibit different characters from those of PZNT91/9 crystals grown from flux, although segregation and the variation of chemical composition are not seriously confirmed by X-ray fluorescence analysis (XPS). The [0 0 1]-oriented PZNT91/9 crystals cut from the middle part of the as-grown crystal boules exhibit broad dielectric-response peaks at around 105 °C, accompanied by apparent frequency dispersion. The values of piezoelectric constant d33, remnant polarization Pr, and induced strain are about 1800–2200 pC/N, 38.8 μC/cm2, and 0.3%, respectively, indicating that the quality of PZNT crystals grown directly from melt can be comparable to those of PZNT91/9 single crystals grown from flux. However, further work deserves attention to improve the dielectric properties of PZNT crystals grown directly from melt. Such unusual characterizations of dielectric properties of PZNT crystals grown directly from melt are considered as correlating with defects, microinhomogeneities, and polar regions.  相似文献   

9.
The phase equilibrium and the crystallization process of lead iodide (PbI2) melt have been primarily investigated according to the lead–iodine phase diagram. It is found that the iodine evaporation and the segregated lead deposition are the two important factors that affect the PbI2 crystal quality. The new method of Pulling U-type quartz growth ampoule has been made to impede the decomposition of PbI2 and the vaporization and condensation of iodine. An orange and translucent PbI2 single crystal of large size was obtained by the improved growth method, i.e. U-type ampoule pulling. Resistivity of the as-grown crystal is up to 4×1011 Ω cm, and IR transmission is up to 45% in the region from 7800 to 450 cm−1. Therefore, the improved growth method is a promising convenient new method for the growth of high quality PbI2 crystals.  相似文献   

10.
YBa2Cu4O8 is a stoichiometric oxide superconductor of Tc80 K. Unlike YBa2Cu3O7−δ, this compound is free from oxygen vacancy or twin formation and does not have any microscopic disorder in the crystal. Doping with Ca raises its Tc to 90 K. The compound is a promising superconductor for technological application. Up to now, single crystals have not been grown without using specialized apparatus with extremely high oxygen pressure up to 3000 bar and at over 1100 °C due to the limited range of reaction kinetics of the compound. This fact has delayed the progress in the study of its physical properties and potential applications. We present here a simple growth method using KOH as flux that acts effectively for obtaining high-quality single crystals in air/oxygen at the temperature as low as 550 °C. As-grown crystals can readily be separated from the flux and exhibit a perfect orthorhombic morphology with sizes up to 0.7×0.4×0.2 mm3. Our results are reproducible and suggest that the crystals can be grown using a conventional flux method under ambient condition.  相似文献   

11.
The applicability of the edge-defined film-fed growth (EFG) technique for YbxY(1−x)VO4 (x=0.05, 0.1 and 1) was approved by successful growth of crystals up to 80 mm in length as the thin plates. Low-angle grain boundaries and the crystal coloration as main defects were found. Optimal seed orientation was suggested on the strength of vanadate crystal plate morphology. Optical properties, chemical composition and the crystalline quality were investigated.  相似文献   

12.
In this paper, we compare the properties of ZnO thin films (0 0 0 1) sapphire substrate using diethylzinc (DEZn) as the Zn precursor and deionized water (H2O) and nitrous oxide (N2O) as the O precursors, respectively in the main ZnO layer growth by atmospheric pressure metal–organic chemical vapor deposition (AP-MOCVD) technique. Surface morphology studied by atomic force microscopy (AFM) showed that the N2O-grown ZnO film had a hexagonal columnar structure with about 8 μm grain diameter and the relatively rougher surface compared to that of H2O-grown ZnO film. The full-widths at half-maximum (FWHMs) of the (0 0 0 2) and () ω-rocking curves of the N2O-grown ZnO film by double-crystal X-ray diffractometry (DCXRD) measurement were 260 and 350 arcsec, respectively, indicating the smaller mosaicity and lower dislocation density of the film compared to H2O-grown ZnO film. Compared to H2O-grown ZnO film, the free exciton A (FXA) and its three phonon replicas could be clearly observed, the donor-bound exciton A0X (I10):3.353 eV dominated the 10 K photoluminescence (PL) spectrum of N2O-grown ZnO film and the hydrogen-related donor-bound exciton D0X (I4):3.363 eV was disappeared. The electron mobility (80 cm2/V s) of N2O-grown ZnO film has been significantly improved by room temperature Hall measurement compared to that of H2O-grown ZnO film.  相似文献   

13.
Selective growth of WO2, W and WO3−x crystals from amorphous WO3 film by vacuum heating at 400–900°C was clarified. The grown WO3−x crystals were incommensurate structure based on crystallographic share structure. The growth process of WO2 crystal in the amorphous film was directly observed at high temperature in the electron microscope. The growth front of the WO2 crystal consumes WO3 microcrystallites with various orientations. The growth speed of the WO2 depended on WO3 microcrystallites orientation. The origin of the wavy growth front of WO2 was due to an orientation dependence of the WO3 microcrystallites.  相似文献   

14.
A novel approach for preparation of red-emitting europium-doped yttrium oxide phosphor (Y2O3:Eu) by using the bicontinuous cubic phase (BCP) process was reported in this paper. The BCP system was composed of anionic surfactant sodium bis(2-ethylhexyl)sulfosuccinate (AOT) and aqueous yttrium nitrate/europium nitrate solution. Energy dispersive spectrometer analysis revealed the homogeneous precipitation occurred in the BCP structure. Thermogravimetric analysis measurements indicated the precursor powder was europium-doped yttrium hydroxide, Y1−xEux(OH)3. Scanning electron microscopy micrographs showed the precursor powder had a primary size about 30 nm and narrow size distribution. After heat treatment in furnace above 700 °C for 4 h, high crystallinity Y2O3:Eu phosphors was obtained. However, the primary size of particles grew to 50–200 nm and the dense agglomerates with a size below 1 μm were formed. X-ray diffraction patterns indicated the crystal structure of precursor powders and Y2O3:Eu phosphors were amorphous and body-centered cubic structure, respectively. The photoluminescence analysis showed that the obtained Y2O3:Eu phosphor had a strong red emitting at 612 nm and the quenching started at a Eu concentration of 10 mol%. This study indicated that the BCP process could be used to prepare the highly efficient oxide-based phosphors.  相似文献   

15.
Single crystals of Co50Ni20FeGa29 with B2 phase have been obtained in a deep supercooling condition. The interface-facets and the segregation effect lead to the formation of ordered defects that store a directional internal stress. These defects give to a large energy barrier that leads to a very sharp martensitic transformation within a temperature window of only 2 K. The single crystals show good shape memory effect and superelasticity, which are anisotropic between the growth direction [0 0 1] and its equivalent direction [0 1 0]. The anisotropic behaviors are attributed to the directional internal stress caused by the ordered defects.  相似文献   

16.
Thin films of crystalline lithium niobate (LN) grown on Si(1 0 0) and SiO2 substrates by electron cyclotron resonance plasma sputtering exhibit distinct interfacial structures that strongly affect the orientation of respective films. Growth at 460–600 °C on the Si(1 0 0) surface produced columnar domains of LiNbO3 with well-oriented c-axes, i.e., normal to the surface. When the SiO2 substrate was similarly exposed to plasma at temperatures above 500 °C, however, increased diffusion of Li and Nb atoms into the SiO2 film was seen and this led to an LN–SiO2 alloy interface in which crystal-axis orientations were randomized. This problem was solved by solid-phase crystallization of the deposited film of amorphous LN; the degree of c-axis orientation was then immune to the choice of substrate material.  相似文献   

17.
CaV6O16·3H2O nanoribbons have been prepared by the hydrothermal method in the presence of sodium dodecyl sulfate (SDS) at 160°C for 10 h. X-ray diffraction pattern indicates that the sample is monoclinic phase of CaV6O16·3H2O with the lattice contents a=12.18 Å, b=3.598 Å, c=18.39 Å, β=118.03°. Field emission scanning electron microscopy shows that the nanoribbons have widths in the range of 150–500 nm, thicknesses of 30–60 nm and lengths of 500 mm X-ray photoelectron spectrum measurements further confirm the formation of the CaV6O16·3H2O phase. The formation of CaV6O16·3H2O nanoribbons is a self-assembling process, in which surfactant SDS plays the role of soft template.  相似文献   

18.
Single crystals of ruby have been obtained from fluxed melts based on the systems Li2O–MoO3, Li2O–WO3, Na2O–WO3, 2PbO–3V2O5, PbO–V2O5–WO3, PbF2–Bi2O3 and Na3AlF6 by both the TSSG method and spontaneous crystallization at the temperatures 1330–900 °C. Al2O3 solubility has been measured for the flux composition of 2Bi2O3–5PbF2 in the temperature range 1200–1000 °C and dissolution enthalpy has been defined as 29.4 KJ/Mol. The composition of grown crystals was studied by electron microprobe analysis. The synthetic ruby contains from 0.51 to 6.38 at% of chromium admixture depending on the crystal growth conditions. Experimental results on growth conditions, composition and morphology of grown crystals are presented for each flux and temperature interval.  相似文献   

19.
Large-size single crystals of β-Ga2O3 with 1 inc in diameter have been grown by the floating zone technique. The stable growth conditions have been determined by the examination of the crystal structure. Wafers have been cut and fine polished in the (1 0 0), (0 1 0) and (0 0 1) planes. These were highly transparent in the visible and near UV, as well as electrically conductive, indicating the potential use of β-Ga2O3 as a substrate for optoelectic devices operating in the visible/near UV and with vertical current flow.  相似文献   

20.
We have fabricated LaNiO3 and BaTiO3 films using the rf sputtering method. The LaNiO3 were deposited on Si substrates, demonstrating a (1 0 0) highly oriented structure and nanocrystalline characteristic with a grain size of 30 nm. The BaTiO3 thin films were deposited on the LaNiO3 buffer layers, and have exhibited a (1 0 0) texture with a thickness of 400 nm. A smooth interface is obtained between the LaNiO3 bottom electrode and the BaTiO3 film from cross-section observations by scanning electron microscopy. The bi-layer films show a dense and column microstructure with a grain size of 60 nm. Ferroelectric characterizations have been obtained for the BaTiO3 films. The remnant polarization and coercive field are 2.1 μC/cm2 and 45 kV/cm, respectively. The leak current measurements have shown a good insulating property.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号