首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
D. Catoor 《哲学杂志》2013,93(16):2154-2185
In polycrystalline materials that fail by transgranular cleavage, it is known that crystallographic misorientation of preferred fracture planes across grain boundaries can provide crack growth resistance; despite this, the micromechanisms associated with crack transmission across grain boundaries and their role in determining the overall fracture resistance are not well understood. Recent studies on diverse structural materials such as steels, aluminum alloys and intermetallics have shown a correlation between fracture resistance and the twist component of grain misorientation. However, the lack of control over the degree and type of misorientation in experimental studies, combined with a dearth of analytical and computational investigations that fully account for the three-dimensional nature of the problem, have precluded a systematic analysis of this phenomenon. In this study, this phenomenon was investigated through in situ crack propagation experiments across grain boundaries of controlled twist misorientation in zinc bicrystals. Extrinsic toughening mechanisms that activate upon crack stagnation at the grain boundary deter further crack propagation. The mechanical response and crack growth behavior were observed to be dependent on the twist angle, and several accommodation mechanisms such as twinning, strain localization and slip band blocking contribute to fracture resistance by competing with crack propagation. Three-dimensional finite element analyses incorporating crystal plasticity were performed on a stagnant crack at the grain boundary that provide insight into crack-tip stress and strain fields in the second grain. These analyses qualitatively capture the overall trends in mechanical response as well as strain localization around stagnant crack-tips.  相似文献   

2.
The present work investigates the polarization response in polycrystalline Ni0.9−yCuyZn0.1Fe1.98O4−δ (y = 0, 0.1, 0.2, 0.3, 0.4, 0.5) ferrite synthesized by solid–state reaction method. X-ray diffraction analysis confirmed cubic spinel phase formation in the calcined samples. Sintered samples contain a continuous network of CuO-rich segregation along the grain boundaries for y ≥ 0.2. Dielectric spectra showed a relaxation peak for y ≥ 0.2 in the frequency range of 1 kHz–1 MHz. This relaxation has been explained based on Maxwell–Wagner polarization considering two-layer model in connection with two heterogeneous dielectric media.  相似文献   

3.
We report the results of our microchemical analyses of low- large-angle grain boundaries in bulk YBa2Cu3O7- using nanoprobe energy-dispersive-X-ray spectroscopy (EDX) and electron-energy-loss spectroscopy (EELS). We observed periodic variation in the concentration of Cu along the boundaries, and oxygen depletion at the boundaries. We found that the chemistry of the grain boundary is very sensitive to grain boundary dislocations (GBDs), while, in turn, the configuration of the GBDs is very sensitive to the boundary misorientation and the boundary plane normal. The strain field associated with closely spaced GBDs reduced the density of mobile holes at the boundary, which is expected to be detrimental to the superconducting properties of the boundary. The possible structural transition of the grain boundaries from an oxygen-deficient state to a fully oxygenated state near a coincidence orientation is discussed, based on the reduction of the elastic strain energy of the boundaries.  相似文献   

4.
陈征征  王崇愚 《中国物理》2006,15(3):604-609
The effect of Re segregation on the α-Fe ∑5 [001] (010) grain boundary (GB) is investigated by using a software called DMol and discrete variational method (DVM). Based on the Rice Wang model, the calculated segregation energy and defect formation energy show that Re is a strong cohesive enhancer. We also calculated the interatomic energy (IE) and bond order (BO) of several atomic pairs to investigate the mechanism of the cohesive effect of Re microscopically and locally. The results show that IEs of atomic pairs formed by those atoms which cross the plane of GB are strengthened due to the segregation of Re, while the BOs of the corresponding pairs are slightly decreased. This discrepancy demonstrates that IE which contains the Hamiltoniaa of interaction between atoms is a good quantity to describe the bonding strength. The analysis suggests that the electronic effect between atomic pair which comes directly from Hamiltonian is the key factor, The charge density is also presented, and the result indicates that the bonding strength between the Fe atoms on the GB is enhanced due to the segregation of Re, which is consistent with the analysis of IE.  相似文献   

5.
Impurity segregation at grain boundary(GB) can significantly affect the mechanical behaviors of polycrystalline metal. The effect of nickel impurity segregated at Cu GB on the deformation mechanism relating to loading direction is comprehensively studied by atomic simulation. The atomic structures and shear responses of Cu Σ9(114) 110 and Σ9(221) 110 symmetrical tilt grain boundary with different quantities of nickel segregation are analyzed. The results show that multiple accommodative evolutions involving GB gliding, GB shear-coupling migration, and dislocation gliding can be at play, where for the 2ˉ21ˉ shear of Σ9(114) 110 the segregated GBs tend to maintain their initial configurations and a segregated GB with a higher impurity concentration is more inclined to be a dislocation emission source while maintaining the high mechanical strength undergone plastic deformation for the 11ˉ4ˉ shear of Σ9(221) 110. It is found that the nickel segregated GB exerts a cohesion enhancement effect on Cu under deformation: strong nickel segregation increases the work of separation of GB, which is proved by the first-principles calculations.  相似文献   

6.
胡雪兰  赵若汐  罗阳  宋庆功 《中国物理 B》2017,26(2):23101-023101
First-principles calculations based on the density functional theory(DFT) and ultra-soft pseudopotential are employed to study the atomic configuration and charge density of impurity P in Ni Al Σ5 grain boundary(GB). The negative segregation energy of a P atom proves that a P atom can easily segregate in the Ni Al GB. The atomic configuration and formation energy of the P atom in the Ni Al GB demonstrate that the P atom tends to occupy an interstitial site or substitute a Al atom depending on the Ni/Al atoms ratio. The P atom is preferable to staying in the Ni-rich environment in the Ni Al GB forming P–Ni bonds. Both of the charge density and the deformation charge imply that a P atom is more likely to bond with Ni atoms rather than with Al atoms. The density of states further exhibits the interactions between P atom and Ni atom, and the orbital electrons of P, Ni and Al atoms all contribute to P–Ni bonds in the Ni Al GB. It is worth noting that the P–Ni covalent bonds might embrittle the Ni Al GB and weakens the plasticity of the Ni Al intermetallics.  相似文献   

7.
8.
The microscopic structures and the bonding properties of Y-doped and undoped(0118)/[0441]/180?(Σ37) grain boundaries in alumina are investigated by using ab initio method.The formation energy of grain boundary and the segregation energy of Y to grain boundary are acquired.Electronic structures,potential distributions,bond orders and effective charges of Y-doped and undoped Σ37 GB systems are calculated.Our results reveal that the higher strength Y-O bond than Al-O bond is ascribed to the hybridization of Y(4p,3d) with O(2s).Meanwhile,dopant Y also causes a change in potential distribution in the grain boundary region,thereby further aflecting the transport property of ceramic alumina.  相似文献   

9.
In situ straining in the transmission electron microscope and diffraction-contrast electron tomography have been applied to the investigation of dislocation/grain boundary and dislocation/twin boundary interactions in α-Ti. It was found that, similar to FCC materials, the transfer of dislocations across grain boundaries is governed primarily by the minimization of the magnitude of the Burgers vector of the residual grain boundary dislocation. That is, grain boundary strain energy density minimization determines the selection of the emitted slip system.  相似文献   

10.
The existence of a possible grain boundary disordering transition of the melting type in a =5 (001) twist boundary of aluminium bicrystal below the melting temperature was investigated using a constant pressure molecular dynamics simulation. The calculated melting temperature T cm of the bulk Al is about 960 K. The total internal energy, the structure factor, and the pair distribution function were calculated at different layers across the grain boundary. The mean atomic volume, the grain boundary energy, and the thermal expansion coefficients were also calculated using the same simulation method. This simulation also allows us to image the grain boundary structure at different temperatures. The equilibrium grain boundary structure at 300 K retains the periodicity of the coincident site lattice, so that the lowest energy structure corresponds to the coincident site arrangement of the two ideal crystals. With increasing temperature, the total internal energy of the atoms for both the perfect crystal and the grain boundary increases, as do the number of layers in the grain boundary. The grain boundary core exists and the perfect crystal structure still exists outside the grain boundary at 0.9375 T cm. However, two atomic layers of the equilibrium grain boundary structure at 0.9375 T cm lose the coincident site lattice periodicity and attain a structure with liquid-like disorder. Therefore, partial melting of the grain boundary has occurred at the temperature above 0.9375 T cm which is in agreement with the experimental results.  相似文献   

11.
Interfacial energy is a fundamental physiochemical property of any multi-phase system. Among the most direct approaches for determining solid–liquid interfacial energy is a technique based on measuring the shape of grain boundary grooves in specimens subjected to a linear temperature gradient. This technique was adapted to crystallizing colloids in a gravitational field. Such colloids exhibit a freezing–melting phase transition and are important not only as self-assembling precursors to photonic crystals, but also as physical models of atomic and molecular systems. The grain boundary groove technique was tested using suspensions of sterically stabilized poly(methyl methacrylate) spheres, which have been shown to closely approximate the hard sphere potential. Whereas isotropic models did not fit grain boundary groove data well, the capillary vector model, which is suitable for both isotropic and anisotropic surface energies, produced γ110?=?0.58?±?0.05 k B T2. This value of interfacial energy is in agreement with many of the published values for hard spheres, supporting the validity of our grain boundary groove technique adaptations to colloidal systems in a gravitational field. Finally, kinks observed in groove profiles suggest a minimum anisotropy parameter of ε?=?0.029 for hard spheres.  相似文献   

12.
13.
The evolution of texture and microstructure during recrystallization is studied for two-phase copper alloy (Cu–40Zn) with a variation of the initial texture and microstructure (hot rolled and solution treated) as well as the mode of rolling (deformation path: uni-directional rolling and cross rolling). The results of bulk texture have been supported by micro-texture and microstructure studies carried out using electron back scatter diffraction (EBSD). The initial microstructural condition as well as the mode of rolling has been found to alter the recrystallization texture and microstructure. The uni-directionally rolled samples showed a strong Goss and BR {236}?385? component while a weaker texture similar to that of rolling evolved for the cross-rolled samples in the α phase on recrystallization. The recrystallization texture of the β phase was similar to that of the rolling texture with discontinuous ?101? α and {111} γ fiber with high intensity at {111}?101?. For a given microstructure, the cross-rolled samples showed a higher fraction of coincident site lattice Σ3 twin boundaries in the α phase. The higher fraction of Σ3 boundaries is explained on the basis of the higher propensity of growth accidents during annealing of the cross-rolled samples. The present investigation demonstrates that change in strain path, as introduced during cross-rolling, could be a viable tool for grain boundary engineering of low SFE fcc materials.  相似文献   

14.
The structure of a 5 (210) boundary in rutile was investigated by high resolution electron microscopy (HREM). The boundary was stepped with an average inclination of about 5° from the symmetrical (210) plane. The steps were associated with 1/5[210] DSC lattice dislocations accommodating a deviation of about 2° from the exact 5 misorientation of 53.1°, and resulting in a misorientation of 51°. The boundary topography, the location of structural units and the local symmetry were determined using pattern recognition techniques. Flat terraces between steps had a periodic 5 (210) structure which exhibited mirror glide symmetry. Image simulations showed best agreement with experimental images for a model structure with a rigid body shift of 0.21 nm parallel, and a 0.10 nm volume contraction normal to the interface. This structure requires a high density of defects or an excess of Ti ions, presumably of lower oxidation state.  相似文献   

15.
《中国物理 B》2021,30(9):97402-097402
Grain boundaries(GBs),as extremely anisotropic pinning defects,have a strong impact on vortex motion in type-Ⅱsuperconductors,and further on the macro level dominates the superconductivity for example the critical current density.Many previous studies indicated that mostly GB plays the role of a strong barrier for vortex motion,while an easy-flow channel just under some certain conditions.In order to thoroughly make clear of the questions of what is exactly the role of GB on vortex motion and how it works,in this article we developed a large scale molecular dynamic model and revealed the action of GB on vortex motion in type-Ⅱ superconductors.The most significant finding is that the role of GB on vortex motion can be changeable from a barrier to an easy-flow channel,and which is intrinsically determined by the competition effect correlated with its action on vortex between in the GB and no-GB regions.Such the competition effect essentially depends on the attributes of both the GB(described by the GB strength and angle θ) and no-GB pining regions(by the relative disorder strength α_p/a_v).Specifically,for a YBa_2 Cu_3 O_(7-x)(YBCO) sample,to obtain a clear knowledge of vortex motion in GB region,we visualized the three typical trajectories of vortices during the three vortex movement stages.Further,in order to understand how GB results in the macro current-carrying property,corresponding to the current-voltage relation of the YBCO conductor,we obtained the average velocity v_y of vortices varying with their driving force,which is nearly identical with the previous observations.  相似文献   

16.
A novel grain boundary diffusion (GBD) treatment with a Dy–Ni–Al eutectic alloy powder allowed Dy to penetrate into sintered plates of Nd–Fe–B magnet as thick as 5 mm. The coercivity of the magnet was increased from a value of 1160 kA/m (14.5 kOe) to 1760 kA/m (22 kOe). This was achieved without any marked decrease in remanance and with a high squareness.  相似文献   

17.
王飞  赖文生  李如松  何彬  黎素芬 《中国物理 B》2016,25(6):66804-066804
Interactions between vacancies and Σ3 prismatic screw-rotation grain boundary in α-Al_2O_3 are investigated by the first principles projector-augmented wave method.It turns out that the vacancy formation energy decreases with reducing the distance between vacancy and grain boundary(GB) plane and reaches the minimum on the GB plane(at the atomic layer next to the GB) for an O(Al) vacancy.The O vacancy located on the GB plane can attract other vacancies nearby to form an O–O di-vacancy while the Al vacancy cannot.Moreover,the O–O di-vacancy can further attract other O vacancies to form a zigzag O vacancy chain on the GB plane,which may have an influence on the diffusion behavior of small atoms such as H and He along the GB plane of α-Al_2O_3.  相似文献   

18.
Yttria-doped ceria ceramics were prepared and reduced in an oxygen-deficient (argon) ambient. Electrical characterization through impedance spectroscopy revealed ionic-type conduction processes in as-sintered samples, with grain–bulk and grain–boundary activation energies (H) of about 1.00 eV and 1.05 eV, respectively. Electrical results from the reduced materials showed a predominant electronic-type, relatively high conductivity for the grains (H=0.52 eV), in contrast to a still ionic-like, relatively poor conductivity for the grain boundaries (H=0.95 eV). With the support of the results processed after re-oxidizing the materials in air combined with information from literature, this apparently contradictory behavior is discussed in terms of electron trapping at (Ce3+:)-type defect complexes. The overall work strongly supports the idea that surfaces (e.g., grain boundaries) in polycrystalline ceria are indeed much more sensitive to redox interactions than lattice. PACS 72.20.-i; 72.60.+g; 72.80.-r  相似文献   

19.
The Auger electron spectroscopy study on chemistry of the 46.8°(111) twist grain boundary of an Fe–2.3%V alloy showed an extended phosphorus enrichment at temperatures in range of 500 °C and 800 °C. Simultaneously, slight but nearly independent segregation of vanadium was also detected. The standard enthalpy and entropy of grain boundary segregation of phosphorus and vanadium were determined according to the Guttmann model of multicomponent interfacial segregation. Obtained data clearly show that this Σ = 19 coincidence boundary is special (i.e. low energy interface). The data also fit well with the predictive model of grain boundary segregation and confirm that phosphorus segregates interstitially at the grain boundary while vanadium substitutes iron atoms in the interface structure.  相似文献   

20.
In this paper, we employ the first-principle total energy method to investigate the effect of P impurity on mechanical properties of NiAl grain boundary(GB). According to "energy", the segregation of P atom in NiAlΣ5 GB reduces the cleavage energy and embrittlement potential, demonstrating that P impurity embrittles NiAlΣ5 GB. The first-principle computational tensile test is conducted to determine the theoretical tensile strength of NiAlΣ5 GB. It is demonstrated that the maximum ideal tensile strength of NiAlΣ5 GB with P atom segregation is 144.5 GPa, which is lower than that of the pure NiAlΣ5 GB(164.7 GPa). It is indicated that the segregation of P weakens the theoretical strength of NiAlΣ5 GB.The analysis of atomic configuration shows that the GB fracture is caused by the interfacial bond breaking. Moreover, P is identified to weaken the interactions between Al–Al bonds and enhance Ni–Ni bonds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号